Skip to search form
Skip to main content
Skip to account menu
Semantic Scholar
Semantic Scholar's Logo
Search 210,150,956 papers from all fields of science
Search
Sign In
Create Free Account
De Bruijn–Erdős theorem (graph theory)
Known as:
De Bruijn-Erdős theorem (graph coloring)
, De Bruijn–Erdős theorem (graph coloring)
, De Bruijn
Expand
In graph theory, the De Bruijn–Erdős theorem, proved by Nicolaas Govert de Bruijn and Paul Erdős (), states that, for every infinite graph G and…
Expand
Wikipedia
(opens in a new tab)
Create Alert
Alert
Related topics
Related topics
12 relations
Critical graph
Edge coloring
Euclidean distance
Four color theorem
Expand
Broader (1)
Graph coloring
Papers overview
Semantic Scholar uses AI to extract papers important to this topic.
2013
2013
A Question from a Famous Paper of Erdős
I. Bárány
,
E. Roldán-Pensado
Discrete & Computational Geometry
2013
Corpus ID: 254030316
Given a convex body K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage…
Expand
2012
2012
Towards a de Bruijn–Erdős Theorem in the $$L_1$$-Metric
Ida Kantor
,
Balázs Patkós
Discrete & Computational Geometry
2012
Corpus ID: 36005038
A well-known theorem of de Bruijn and Erdős states that any set of $$n$$ non-collinear points in the plane determines at least…
Expand
2010
2010
The de Bruijn–Erdős theorem for hypergraphs
N. Alon
,
K. E. Mellinger
,
D. Mubayi
,
Jacques Verstraëte
Des. Codes Cryptogr.
2010
Corpus ID: 15064936
Fix integers n ≥ r ≥ 2. A clique partition of $${{[n] \choose r}}$$ is a collection of proper subsets $${A_1, A_2, \ldots, A_t…
Expand
2010
2010
Chvátal-Erdös type theorems
J. Faudree
,
R. Faudree
,
R. Gould
,
M. Jacobson
,
Colton Magnant
Discussiones Mathematicae Graph Theory
2010
Corpus ID: 819326
The Chvátal-Erdös theorems imply that if G is a graph of order n ≥ 3 with κ(G) ≥ α(G), then G is hamiltonian, and if κ(G) > α(G…
Expand
2004
2004
Universally bad integers and the 2-adics
S. Eigen
,
Y. Ito
,
V. Prasad
2004
Corpus ID: 17982020
2002
2002
NON-CANONICAL EXTENSIONS OF ERDŐS-GINZBURG-ZIV THEOREM1
R. Thangadurai
2002
Corpus ID: 15933642
In 1961, Erdős-Ginzburg-Ziv proved that for a given natural number n ≥ 1 and a sequence a1, a2, · · · , a2n−1 of integers (not…
Expand
1995
1995
New constructions for De Bruijn tori
G. Hurlbert
,
G. Isaak
Des. Codes Cryptogr.
1995
Corpus ID: 117880
AbstractA De Bruijn torus is a periodicd-dimensionalk-ary array such that eachn1 × ... ×ndk-ary array appears exactly once with…
Expand
1984
1984
Another Solution of the Mutual Exclusion Problem
T. Kowaltowski
,
A. Palma
Information Processing Letters
1984
Corpus ID: 11861236
1982
1982
Packing nearly-disjoint sets
P. Seymour
Comb.
1982
Corpus ID: 36360689
De Bruijn and Erdős proved that ifA1, ...,Ak are distinct subsets of a set of cardinalityn, and |Ai ∩Aj|≦1 for 1≦in, then some…
Expand
1968
1968
Differences of functions and measures
R. Edwards
Journal of the Australian Mathematical Society
1968
Corpus ID: 123167436
Throughout this paper, G will denote a locally compact Hausdorff group with a chosen left Haar measure m. For each s ∈ G, τs…
Expand
By clicking accept or continuing to use the site, you agree to the terms outlined in our
Privacy Policy
(opens in a new tab)
,
Terms of Service
(opens in a new tab)
, and
Dataset License
(opens in a new tab)
ACCEPT & CONTINUE