Author pages are created from data sourced from our academic publisher partnerships and public sources.
- Publications
- Influence
A combinatorial problem in geometry
- P. Erdös, G. Szekeres
- Mathematics
- 2009
Our present problem has been suggested by Miss Esther Klein in connection with the following proposition.
INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS
2. Notation The letters a, b, c, d, x, y, z denote finite sets of non-negative integers, all other lower-case letters denote non-negative integers. If fc I, then [k, I) denotes the set… Expand
Some remarks on the theory of graphs
- P. Erdös
- Mathematics
- 1 April 1947
The present note consists of some remarks on graphs. A graph G is a set of points some of which are connected by edges. We assume here that no two points are connected by more than one edge. The… Expand
On Sets of Distances of n Points
- P. Erdös
- Mathematics
- 1 May 1946
1. The function f(n). Let [P. ] be the class of all planar subsets P. of n points and denote by f(n) the minimum number of different distances determined by its n points for P,, an element of { P. }.… Expand
On a lemma of Littlewood and Offord
- P. Erdös
- Mathematics
- 1 December 1945
Remark. Choose Xi = l, n even. Then the interval ( — 1, + 1 ) contains Cn,m s u m s ^ i e ^ , which shows that our theorem is best possible. We clearly can assume that all the Xi are not less than 1.… Expand
Graph Theory and Probability
- P. Erdös
- Mathematics
- 1959
A well-known theorem of Ramsay (8; 9) states that to every n there exists a smallest integer g(n) so that every graph of g(n) vertices contains either a set of n independent points or a complete… Expand
On extremal problems of graphs and generalized graphs
- P. Erdös
- Mathematics
- 1 September 1964
AbstractAnr-graph is a graph whose basic elements are its vertices and r-tuples. It is proved that to everyl andr there is anε(l, r) so that forn>n0 everyr-graph ofn vertices andnr−ε(l, r) r-tuples… Expand
Ramsey-type theorems
TLDR
...
1
2
3
4
5
...