Descent of Line Bundles to Git Quotients of Flag Varieties by Maximal Torus

@article{Kumar2007DescentOL,
  title={Descent of Line Bundles to Git Quotients of Flag Varieties by Maximal Torus},
  author={Shrawan Kumar},
  journal={Transformation Groups},
  year={2007},
  volume={13},
  pages={757-771},
  url={https://api.semanticscholar.org/CorpusID:17832865}
}
  • Shrawan Kumar
  • Published 19 February 2007
  • Mathematics
  • Transformation Groups
Let G be a connected, simply connected semisimple complex algebraic group with a maximal torus T and let P be a parabolic subgroup containing T. Let $ \mathcal{L}_{P} {\left( \lambda \right)} $ be a homogeneous ample line bundle on the ag variety Y = G = P. We give a necessary and sufficient condition for $ \mathcal{L}_{P} {\left( \lambda \right)} $ to descend to a line bundle on the GIT quotient Y(λ)//T. As a consequence of this result, we get the precise list of P-regular weights λ for which… 

Projective normality of torus quotients of homogeneous spaces

Let $G=SL_n(\mathbb C)$ and $T$ be a maximal torus in $G$. We show that the quotient $T \backslash \backslash G/{P_{\alpha_1}\cap P_{\alpha_2}}$ is projectively normal with respect to the descent of

Some conditions for descent of line bundles to GIT quotients $(G/B \times G/B \times G/B)//G$

We consider the descent of line bundles to GIT quotients of products of flag varieties. Let $G$ be a simple, connected, algebraic group over $\mathbb{C}$. We fix a Borel subgroup $B$ and consider the

Smooth torus quotients of Richardson varieties in the Grassmannian

Let $k$ and $n$ be positive coprime integers with $k<n$. Let $T$ denote the subgroup of diagonal matrices in $SL(n,\mathbb{C})$. We study the GIT quotient of Richardson varieties $X^v_w$ in the

Smooth torus quotients of Schubert varieties in the Grassmannian

Let $r < n$ be positive integers and further suppose $r$ and $n$ are coprime. We study the GIT quotient of Schubert varieties $X(w)$ in the Grassmannian $G_{r,n}$, admitting semistable points for the

On the Torus quotients of Schubert varieties

In this paper, we consider the GIT quotients of Schubert varieties for the action of a maximal torus. We describe the minuscule Schubert varieties for which the semistable locus is contained in the

Torus Quotients of Schubert Varieties

In this paper, we consider the GIT quotients of Schubert varieties for the action of a maximal torus. We describe the minuscule Schubert varieties for which the semistable locus is contained in the

Syzygies of some GIT quotients

Let $X$ be flat scheme over $\mathbb{Z}$ such that its base change, $X_p$, to $\bar{\mathbb{F}}_p$ is Frobenius split for all primes $p$. Let $G$ be a reductive group scheme over $\mathbb{Z}$ acting

Torus Quotients of Richardson Varieties

For $1\le r\le n-1,$ let $G_{r,n}$ denote the Grassmannian parametrizing $r$-dimensional subspaces of $\mathbb{C}^{n}.$ Let $(r,n)=1.$ In this article we show that the GIT quotients of certain

Geometric Invariant Theory

“Geometric Invariant Theory” by Mumford/Fogarty (the first edition was published in 1965, a second, enlarged edition appeared in 1982) is the standard reference on applications of invariant theory to

Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques

Soient X une courbe algebrique projective lisse de genre g ≥ 2 sur ℂ, r, d des entiers, avec r ≥ 2. On note U(r,d) la variete de modules des fibres algebriques semi-stables sur X de rang r et de

Introduction to Lie Algebras and Representation Theory

Preface.- Basic Concepts.- Semisimple Lie Algebras.- Root Systems.- Isomorphism and Conjugacy Theorems.- Existence Theorem.- Representation Theory.- Chevalley Algebras and Groups.- References.-

Spaces of Constant Curvature

This sixth edition illustrates the high degree of interplay between group theory and geometry. The reader will benefit from the very concise treatments of riemannian and pseudo-riemannian manifolds

Groupes et algèbres de Lie

Les Elements de mathematique de Nicolas Bourbaki ont pour objet une presentation rigoureuse, systematique et sans prerequis des mathematiques depuis leurs fondements. Ce premier volume du Livre sur

Geometric invariant theory, Third Edition