Descent of Line Bundles to Git Quotients of Flag Varieties by Maximal Torus
@article{Kumar2007DescentOL, title={Descent of Line Bundles to Git Quotients of Flag Varieties by Maximal Torus}, author={Shrawan Kumar}, journal={Transformation Groups}, year={2007}, volume={13}, pages={757-771}, url={https://api.semanticscholar.org/CorpusID:17832865} }
Let G be a connected, simply connected semisimple complex algebraic group with a maximal torus T and let P be a parabolic subgroup containing T. Let $ \mathcal{L}_{P} {\left( \lambda \right)} $ be a homogeneous ample line bundle on the ag variety Y = G = P. We give a necessary and sufficient condition for $ \mathcal{L}_{P} {\left( \lambda \right)} $ to descend to a line bundle on the GIT quotient Y(λ)//T. As a consequence of this result, we get the precise list of P-regular weights λ for which…
24 Citations
Projective normality of torus quotients of homogeneous spaces
- 2019
Mathematics
Let $G=SL_n(\mathbb C)$ and $T$ be a maximal torus in $G$. We show that the quotient $T \backslash \backslash G/{P_{\alpha_1}\cap P_{\alpha_2}}$ is projectively normal with respect to the descent of…
Some conditions for descent of line bundles to GIT quotients $(G/B \times G/B \times G/B)//G$
- 2016
Mathematics
We consider the descent of line bundles to GIT quotients of products of flag varieties. Let $G$ be a simple, connected, algebraic group over $\mathbb{C}$. We fix a Borel subgroup $B$ and consider the…
Smooth torus quotients of Richardson varieties in the Grassmannian
- 2023
Mathematics
Let $k$ and $n$ be positive coprime integers with $k<n$. Let $T$ denote the subgroup of diagonal matrices in $SL(n,\mathbb{C})$. We study the GIT quotient of Richardson varieties $X^v_w$ in the…
Smooth torus quotients of Schubert varieties in the Grassmannian
- 2024
Mathematics
Let $r < n$ be positive integers and further suppose $r$ and $n$ are coprime. We study the GIT quotient of Schubert varieties $X(w)$ in the Grassmannian $G_{r,n}$, admitting semistable points for the…
On the Torus quotients of Schubert varieties
- 2021
Mathematics
In this paper, we consider the GIT quotients of Schubert varieties for the action of a maximal torus. We describe the minuscule Schubert varieties for which the semistable locus is contained in the…
Torus Quotients of Schubert Varieties
- 2020
Mathematics
In this paper, we consider the GIT quotients of Schubert varieties for the action of a maximal torus. We describe the minuscule Schubert varieties for which the semistable locus is contained in the…
Syzygies of some GIT quotients
- 2013
Mathematics
Let $X$ be flat scheme over $\mathbb{Z}$ such that its base change, $X_p$, to $\bar{\mathbb{F}}_p$ is Frobenius split for all primes $p$. Let $G$ be a reductive group scheme over $\mathbb{Z}$ acting…
Torus Quotients of Richardson Varieties
- 2023
Mathematics
For $1\le r\le n-1,$ let $G_{r,n}$ denote the Grassmannian parametrizing $r$-dimensional subspaces of $\mathbb{C}^{n}.$ Let $(r,n)=1.$ In this article we show that the GIT quotients of certain…
8 References
Geometric Invariant Theory
- 1965
Mathematics
“Geometric Invariant Theory” by Mumford/Fogarty (the first edition was published in 1965, a second, enlarged edition appeared in 1982) is the standard reference on applications of invariant theory to…
Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques
- 1989
Mathematics
Soient X une courbe algebrique projective lisse de genre g ≥ 2 sur ℂ, r, d des entiers, avec r ≥ 2. On note U(r,d) la variete de modules des fibres algebriques semi-stables sur X de rang r et de…
Introduction to Lie Algebras and Representation Theory
- 1973
Mathematics
Preface.- Basic Concepts.- Semisimple Lie Algebras.- Root Systems.- Isomorphism and Conjugacy Theorems.- Existence Theorem.- Representation Theory.- Chevalley Algebras and Groups.- References.-…
Spaces of Constant Curvature
- 1984
Mathematics
This sixth edition illustrates the high degree of interplay between group theory and geometry. The reader will benefit from the very concise treatments of riemannian and pseudo-riemannian manifolds…
Groupes et algèbres de Lie
- 1971
Philosophy
Les Elements de mathematique de Nicolas Bourbaki ont pour objet une presentation rigoureuse, systematique et sans prerequis des mathematiques depuis leurs fondements. Ce premier volume du Livre sur…