Skip to search formSkip to main contentSkip to account menu

Sequential coupling

In object-oriented programming, sequential coupling refers to a class that requires its methods to be called in a particular sequence. This may be an… 
Wikipedia (opens in a new tab)

Papers overview

Semantic Scholar uses AI to extract papers important to this topic.
2014
2014
Electromagnetic Forming (EMF) is one of the high speed forming technologies. The spatial distribution and temporal evolution of… 
2014
2014
We experimentally demonstrate the collective emission behavior and suppressed cavity-pulling effect of four-level active optical… 
2013
2013
In this paper, FEA model of Cu-Sn micro-bump bonding module and Cu-Sn micro-bump/BCB adhesive hybrid bonding module subjected to… 
2011
2011
A reusable oxidizer-cooled annular aerospike nozzle was designed for testing on a labscale PMMA-N2O hybrid rocket motor at the… 
2006
2006
To study the coupled hydro-geomechanical processes and their influence on gas and nuclide transport in a two-phase flow… 
2006
2006
.................................................................................................................................. X 1. Einleitung ...........................................................................................................................1 1.1. Reaktionswände zur Sanierung von Grundwasserkontaminationen...........................2 1.2. Untersuchte Fragestellungen ......................................................................................4 1.2.1. Abbau komplexer Mischkontaminationen durch Kombinationsreaktionswände .....4 1.2.2. Reaktionen im Abstrom von Reaktionswänden ......................................................6 1.3. Gliederung der Arbeit ..................................................................................................9 2. Remediation of ground water containing chlorinated and brominated hydrocarbons, benzene and chromate by sequential treatment using ZVI and GAC...........................10 2.1. Abstract .....................................................................................................................10 2.2. Introduction and objective .........................................................................................10 2.3. Material and methods................................................................................................12 2.3.1. Experimental.........................................................................................................12 2.3.2. Analytical ..............................................................................................................15 2.4. Results and discussion..............................................................................................16 2.4.1. pH and concentrations of inorganic water constituents ........................................16 2.4.2. Contaminant degradation in contact with ZVI .......................................................18 2.4.3. Contaminant sorption in contact with GAC...........................................................24 2.5. Conclusions...............................................................................................................26 3. pH-Wertpufferung im Abstrom von Reaktionswänden.....................................................27 3.1. Kurzfassung ..............................................................................................................27 3.2. Abstract .....................................................................................................................27 Inhaltsverzeichnis III 3.3. Einleitung...................................................................................................................28 3.4. Material und Methoden..............................................................................................31 3.5. Ergebnisse und Diskussion .......................................................................................35 3.5.1. pH-Wertverschiebung...........................................................................................35 3.5.2. Basenneutralisation und Hydroxidneutralisation...................................................38 3.5.3. pH-Puffermechanismen........................................................................................40 3.6. Schlussfolgerungen...................................................................................................44 4. CKW-Abbaupotential im Abstrom von Fe -Reaktionswänden 0 .........................................46 4.1. Kurzfassung ..............................................................................................................46 4.2. Abstract .....................................................................................................................46 4.3. Einleitung...................................................................................................................47 4.4. Material und Methoden..............................................................................................49 4.4.1. Versuchsaufbau....................................................................................................49 4.4.2. Beprobung und Analytik........................................................................................53 4.4.3. Berechnung der Retardation erhöhter pH-Werte..................................................53 4.4.4. Festphasenuntersuchungen .................................................................................54 4.5. Ergebnisse und Diskussion .......................................................................................54 4.5.1. Sedimentcharakterisierung ...................................................................................54 4.5.2. Redoxmilieu im Aquifermaterial ............................................................................54 4.5.3. Entwicklung des pH-Werts im Aquifermaterial......................................................55 4.5.4. Schadstoffabbau im Aquifermaterial.....................................................................57 4.5.5. Bestimmung von Raten für die PCE-Konzentrationsabnahme.............................61 4.6. Schlussfolgerungen...................................................................................................63 5. Zusammenfassung und Fazit ..........................................................................................65 5.1. Optimierung von Kombinationsreaktionswänden ......................................................65 5.2. Nutzung schadstoffabbauender Prozesse im Abstrom von Reaktionswänden.........66 5.2.1. Ausbreitung erhöhter pH-Werte im Abstrom reaktiver Wände .............................66 5.2.2. Schadstoffabbau im Abstrom einer Fe -Reaktionswand 0 ......................................67 5.3. Schlussfolgerungen...................................................................................................68 6. Literatur............................................................................................................................69 Abbildungsverzeichnis IV Abbildungsverzeichnis Abbildung 1-1: Funktionsprinzip von vollflächig durchströmter Reaktionswand (links) und „Funnel and gate“-Reaktionswand (rechts) (POWELL et al. 1998)......................................2 Abbildung 1-2: Verwendete reaktive Materialien bei Feldanwendungen von 47 Reaktionswänden (EBERT (2004) nach EPA (2002)). ........................................................3 Figure 2-1: Experiment setup. ................................................................................................13 Figure 2-2: pH profiles and concentration profiles of Ca, Mg, Fe, Si, TIC, sulfate, nitrate, ammonium, and dissolved hydrogen in the column containing ZVI during the sampling events after 15 d (-□-), 29 d (-◊-), 40 d (-∆-), 47 d (-×-), 54 d (-+-) and 61 d (-○-) running time. Note limited concentration scale range for sulfate. ............................17 Figure 2-3: Concentration profiles of halogenated methanes in the column containing ZVI during the sampling events after 15 d (-□-), 29 d (-◊-), 40 d (-∆-), 47 d (-×-), 54 d (-+-) and 61d (-○-) running time. Note shorter residence time scale for brominated methanes. ........................................................................................................................19 Figure 2-4: Concentration profiles of chlorinated ethylenes in the column containing ZVI during the sampling events after 15 d (-□-), 29 d (-◊-), 40 d (-∆-), 47 d (-×-), 54 d (-+-) and 61 d (-○-) running time; cis-1,2 DCE and trans-1,2-DCE were not detected throughout the experiment. ..............................................................................................20 Figure 2-5: Concentration profiles of 1,1,2-TCA, 1,2-DCA, 1,2-DCP, MCB, benzene and Cr in the column containing ZVI during the sampling events after 15 d (-□-), 29 d (-◊-), 40 d (-∆-), 47 d (-×-), 54 d (-+-) and 61 d (-○-) running time. Note shorter residence time scale for Cr. .............................................................................................22 Figure 2-6: Development of half-lifes for the degradation of TCM, 1,1,2-TCA, 1,2-DCP, PCE, TCE, 1,1-DCE and VC through contact with ZVI over experiment running time (expressed as exchanged pore volumes in the ZVI)........................................................23 Figure 2-7: DCM concentrations in the inflow (left) and outflow (right) of the column containing GAC................................................................................................................25 Figure 2-8: Sum of TCM, VC, 1,2-DCA, 1,1,2-TCA, 1,2-DCP, benzene, and MCB concentrations in the inflow (left) and outflow (right) of the column containing GAC.......25 Abbildung 3-1: Versuchsaufbau: FORC (links) und FAK (rechts). .........................................32 Abbildung 3-2: pH-Werte entlang der Fließstrecke im Abstromkompartiment (Braunkohlesand) im System FORC im Versuchsverlauf. ...............................................36 Abbildungsverzeichnis V Abbildung 3-3: pH-Werte entlang der Fließstrecke im Abstromkompartiment (Braunkohlesand) im System FAK im Versuchsverlauf. ..................................................36 Abbildung 3-4: Wanderungsgeschwindigkeit (v ) verschiedener pH-Niveaus in den Systemen FORC (höherer Baseneintrag) und FAK (geringerer Baseneintrag). BT 
2005
2005
Abstract A novel concept for the fusion of Ultrasound Reflection Tomography (URT) and Electrical Capacitance Tomography (ECT) for… 
1989
1989
This paper proposes an architecture for integrating speech recognition and natural language processing to provide a spoken…