Skip to search formSkip to main contentSkip to account menu

Representer theorem

In statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk… 
Wikipedia (opens in a new tab)

Papers overview

Semantic Scholar uses AI to extract papers important to this topic.
2018
2018
The theory of RKHS provides an elegant framework for supervised learning. It is the foundation of all kernel methods in machine… 
2015
2015
In the recent years, generalizations of support vector methods for analyzing interval-valued data have been suggested in both the… 
2013
2013
Spectral unmixing is an important issue to analyze remotely sensed hyperspectral data. This involves the decomposition of each… 
2011
2011
We propose a general framework to incorporate first-order logic (FOL) clauses, that are thought of as an abstract and partial… 
2008
2008
Coordinate gradient learning is motivated by the problem of variable selection and determining variable covariation. In this… 
2004
2004
Dans cette petite etude, nous avons etudie la relation entre le roman et le theatre autour des Illusions Perudes de Balzac. Selon… 
2000
2000
Learning of a smooth but nonparametric probability density can be regularized using methods of Quantum Field Theory. We implement… 
1997
1997
Cet article cherche a rendre compte d'une dynamique de groupe dans un travail aupres d'enfants porteurs d'une trisomie 21 a… 
1993
1993
L'A. analyse le phenomene de la « peur » tel qu'il est percu et vecu par les agents dans des univers sociaux differents (jeunes…