Skip to search form
Skip to main content
Skip to account menu
Semantic Scholar
Semantic Scholar's Logo
Search 227,741,296 papers from all fields of science
Search
Sign In
Create Free Account
Lusternik–Schnirelmann theorem
Known as:
Lusternik-Schnirelmann theorem
In mathematics, the Lusternik–Schnirelmann theorem, aka Lusternik–Schnirelmann–Borsuk theorem or LSB theorem, says as follows. If the sphere Sn is…
Expand
Wikipedia
(opens in a new tab)
Create Alert
Alert
Papers overview
Semantic Scholar uses AI to extract papers important to this topic.
2018
2018
Min-Max Theory for Cell Complexes
L. Johnson
,
Kevin P. Knudson
Algebra Colloquium
2018
Corpus ID: 119131841
In the study of smooth functions on manifolds, min-max theory provides a mechanism for identifying critical values of a function…
Expand
2017
2017
Lusternik-Schnirelmann category of the configuration space of complex projective space
C. A. I. Zapata
2017
Corpus ID: 119148427
The Lusternik-Schnirelmann category $cat(X)$ is a homotopy invariant which is a numerical bound on the number of critical points…
Expand
2008
2008
A NOTE ON THE THEOREMS OF LUSTERNIK-SCHNIRELMANN AND BORSUK-ULAM
T. E. Barros
,
C. Biasi
2008
Corpus ID: 56443392
� . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . .. .. .. . . . . . . . . ... ... ... ... .... ... ... ... ... .... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... .... . . . . . . . ..... ...... ...... ..... ..... ...... ...... ..... ..... ..... ...... . . . . . . . . .
2007
2007
Small values of Lusternik-Schnirelmann and systolic categories for manifolds
A. Dranishnikov
,
M. Katz
,
Yuli B. Rudyak
2007
Corpus ID: 8831432
We prove that manifolds of Lusternik-Schnirelmann category 2 necessarily have free fundamental group. We thus settle a 1992…
Expand
2007
2007
A NOTE ON THE THEOREMS OF LUSTERNIK–SCHNIRELMANN AND BORSUK–ULAM
Colloqu Ium
,
Mathemat I Cum
2007
Corpus ID: 54875351
Let p be a prime number and X a simply connected Hausdorff space equipped with a free Zp-action generated by fp : X → X. Let…
Expand
2007
2007
Lusternik–Schnirelmann π1-category of non-simply connected simple Lie groups
T. Matumoto
,
Tetsu Nishimoto
2007
Corpus ID: 122973808
2004
2004
On the Lusternik-Schnirelman theory of a real cohomology class
D. Schütz
2004
Corpus ID: 1083507
Abstract.Farber developed a Lusternik-Schnirelman theory for finite CW-complexes X and cohomology classes ξ H1(X;ℝ). This theory…
Expand
2002
2002
Generalized Lusternik-Schnirelmann Theorem
Liu Yu
2002
Corpus ID: 124333043
This paper generilized Lusternik_Schnirelmann theorem by the Brouwer degree of mapping theorem and the elementary methods of…
Expand
1993
1993
On links whose complements have the Lusternik-Schnirelmann category one
小松 和志
1993
Corpus ID: 124537304
Review
1992
Review
1992
Lusternik-Schnirel′mann category of ribbon knot complement
T. Matumoto
1992
Corpus ID: 123532627
We showed in [8] that a locally flat knot is topologically unknotted if and only if the Lusternik-Schnirelmann category of the…
Expand
By clicking accept or continuing to use the site, you agree to the terms outlined in our
Privacy Policy
(opens in a new tab)
,
Terms of Service
(opens in a new tab)
, and
Dataset License
(opens in a new tab)
ACCEPT & CONTINUE
or Only Accept Required