Skip to search formSkip to main contentSkip to account menu

Lusternik–Schnirelmann theorem

Known as: Lusternik-Schnirelmann theorem 
In mathematics, the Lusternik–Schnirelmann theorem, aka Lusternik–Schnirelmann–Borsuk theorem or LSB theorem, says as follows. If the sphere Sn is… 
Wikipedia (opens in a new tab)

Papers overview

Semantic Scholar uses AI to extract papers important to this topic.
2018
2018
In the study of smooth functions on manifolds, min-max theory provides a mechanism for identifying critical values of a function… 
2017
2017
The Lusternik-Schnirelmann category $cat(X)$ is a homotopy invariant which is a numerical bound on the number of critical points… 
2008
2008
� . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . .. .. .. . . . . . . . . ... ... ... ... .... ... ... ... ... .... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... .... . . . . . . . ..... ...... ...... ..... ..... ...... ...... ..... ..... ..... ...... . . . . . . . . . 
2007
2007
We prove that manifolds of Lusternik-Schnirelmann category 2 necessarily have free fundamental group. We thus settle a 1992… 
2007
2007
Let p be a prime number and X a simply connected Hausdorff space equipped with a free Zp-action generated by fp : X → X. Let… 
2004
2004
Abstract.Farber developed a Lusternik-Schnirelman theory for finite CW-complexes X and cohomology classes ξ H1(X;ℝ). This theory… 
2002
2002
  • Liu Yu
  • 2002
  • Corpus ID: 124333043
This paper generilized Lusternik_Schnirelmann theorem by the Brouwer degree of mapping theorem and the elementary methods of… 
Review
1992
Review
1992
We showed in [8] that a locally flat knot is topologically unknotted if and only if the Lusternik-Schnirelmann category of the…