Skip to search formSkip to main content
You are currently offline. Some features of the site may not work correctly.

Lorenz system

Known as: Lorentz attractor, Lorenz, Lorenz Attractor 
The Lorenz system is a system of ordinary differential equations (the Lorenz equations, note it is not Lorentz) first studied by Edward Lorenz. It is… Expand
Wikipedia

Papers overview

Semantic Scholar uses AI to extract papers important to this topic.
Highly Cited
2012
Highly Cited
2012
  • E. Mahmoud
  • Math. Comput. Model.
  • 2012
  • Corpus ID: 15573947
Abstract The aim of this paper is to introduce a new hyperchaotic complex Lorenz system. This hyperchaotic complex system is… Expand
  • figure 1
  • figure 2
  • figure 3
  • figure 4
  • figure 5
Is this relevant?
Highly Cited
2007
Highly Cited
2007
  • Ruy Barboza
  • Int. J. Bifurc. Chaos
  • 2007
  • Corpus ID: 33717345
In this paper, we investigate the dynamics of the Lorenz system, linearly extended into one additional dimension. The system is… Expand
  • figure 1
  • figure 2
  • figure 3
  • figure 4
  • figure 5
Is this relevant?
Highly Cited
2006
Highly Cited
2006
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in… Expand
  • table 1
Is this relevant?
Highly Cited
2004
Highly Cited
2004
This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can… Expand
  • figure 1
  • figure 2
  • figure 3
  • figure 4
  • figure 4
Is this relevant?
Highly Cited
2002
Highly Cited
2002
This paper introduces a unified chaotic system that contains the Lorenz and the Chen systems as two dual systems at the two… Expand
  • figure 1
  • figure 2
  • figure 3
  • figure 4
  • figure 5
Is this relevant?
Highly Cited
2002
Highly Cited
2002
This paper shows that a large class of systems, introduced in [Celikovský & Vaněcek, 1994; Vaněcek & Celikovský, 1996] as the so… Expand
Is this relevant?
Highly Cited
1994
Highly Cited
1994
Preface 1. Getting the program running 1.1 The Dynamics program and hardware Smalldyn: a small version of Dynamics 1.2 Getting… Expand
Is this relevant?
Highly Cited
1993
Highly Cited
1993
A circuit implementation of the chaotic Lorenz system is described. The chaotic behavior of the circuit closely matches the… Expand
  • figure 1
  • figure 2
  • figure 3
  • figure 4
  • figure 6
Is this relevant?
Highly Cited
1987
Highly Cited
1987
A new graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples. 
  • figure 1
  • figure 2
  • figure 3
  • figure 4
Is this relevant?
Highly Cited
1980
Highly Cited
1980
We study some simple dissipative dynamical systems exhibiting a transition from a stable periodic behavior to a chaotic one. At… Expand
  • figure 2
  • figure 3
  • figure 4
  • figure 5
  • figure 6
Is this relevant?