Skip to search form
Skip to main content
Skip to account menu
Semantic Scholar
Semantic Scholar's Logo
Search 209,895,809 papers from all fields of science
Search
Sign In
Create Free Account
Kolmogorov structure function
In 1973 Kolmogorov proposed a non-probabilistic approach to statistics and model selection. Let each data be a finite binary string and models be…
Expand
Wikipedia
(opens in a new tab)
Create Alert
Alert
Related topics
Related topics
5 relations
Broader (1)
Algorithmic information theory
Kolmogorov complexity
Mathematical model
Minimum description length
String (computer science)
Papers overview
Semantic Scholar uses AI to extract papers important to this topic.
2017
2017
Magic Points in Finance: Empirical Integration for Parametric Option Pricing
M. Gaß
,
K. Glau
,
Maximilian Mair
SIAM Journal on Financial Mathematics
2017
Corpus ID: 3833686
We propose an offline-online procedure for Fourier transform based option pricing. The method supports the acceleration of such…
Expand
2015
2015
Kolmogorov structure functions for automatic complexity
B. Kjos-Hanssen
Theoretical Computer Science
2015
Corpus ID: 44444846
2014
2014
Kolmogorov Structure Functions for Automatic Complexity in Computational Statistics
B. Kjos-Hanssen
International Conference on Combinatorial…
2014
Corpus ID: 10995146
For a finite word \(w\) of length \(n\) and a class of finite automata \(\mathcal A\), we study the Kolmogorov structure function…
Expand
2011
2011
Satellite image artifacts detection based on complexity distortion theory
A. Roman-Gonzalez
,
M. Datcu
IEEE International Geoscience and Remote Sensing…
2011
Corpus ID: 10050395
The artifacts detection is a step of data cleaning process. The classical approach is to predict or determine the existence of…
Expand
2010
2010
On the use of Kolmogorov structure function for periodogram smoothing
C. Giurcăneanu
,
S. Razavi
IEEE International Conference on Acoustics…
2010
Corpus ID: 16326716
In a recent series of papers, it was shown how the periodogram can be smoothed by thresholding the estimated cepstral…
Expand
2008
2008
Algorithmic information theory
P. Grünwald
,
P. Vitányi
ArXiv
2008
Corpus ID: 14457330
2007
2007
Sophistication Revisited
L. Antunes
,
L. Fortnow
Theory of Computing Systems
2007
Corpus ID: 2020289
Abstract Kolmogorov complexity measures the amount of information in a string as the size of the shortest program that computes…
Expand
2005
2005
Approximation of Sobolev-Type Classes with Quasi-Seminorms
Z. Ditzian
,
V. N. Konovalov
,
D. Leviatan
2005
Corpus ID: 12885778
. Since the Sobolev set W rp , 0 < p < 1, in general is not contained in L q , 0 < q ≤ ∞ , we limit ourselves to the set W rp ∩ L…
Expand
2005
2005
Image denoising based on Kolmogorov structure function for a class of hierarchical image models
Bogdan Barliga
,
I. Tabus
,
J. Rissanen
,
J. Astola
SPIE Optics + Photonics
2005
Corpus ID: 122496904
Kolmogorov's structure function (KSF) is used in the algorithmic theory of complexity for describing the structure of a string by…
Expand
Highly Cited
2000
Highly Cited
2000
Algorithmic statistics
P. Gács
,
J. Tromp
,
P. Vitányi
IEEE Transactions on Information Theory
2000
Corpus ID: 6742153
While Kolmogorov (1965, 1983) complexity is the accepted absolute measure of information content of an individual finite object…
Expand
By clicking accept or continuing to use the site, you agree to the terms outlined in our
Privacy Policy
(opens in a new tab)
,
Terms of Service
(opens in a new tab)
, and
Dataset License
(opens in a new tab)
ACCEPT & CONTINUE