Skip to search formSkip to main content
You are currently offline. Some features of the site may not work correctly.

Friedberg numbering

In computability theory, a Friedberg numbering is a numbering (enumeration) of the set of all partial recursive functions that has no repetitions… Expand
Wikipedia

Papers overview

Semantic Scholar uses AI to extract papers important to this topic.
2015
2015
Die bandkeramische Fundstelle Friedberg B3a km 19 wurde im Jahr 2007 ausgegraben und 2013 bearbeitet. Die Besiedlung erstreckt… Expand
Is this relevant?
2014
2014
Die Diskussion um die Frage, wo und unter wessen Verantwortung archäologische Ausgrabungsfunde aufbewahrt werden sollen, wird in… Expand
Is this relevant?
2007
2007
In this paper we consider learnability in some special numberings, such as Friedberg numberings, which contain all the… Expand
Is this relevant?
2005
2005
2vIit einigen }Iodifikationen haben Vo~g]m~ u. F ~ i w . D s ~ einer sf~arken Antidiurese beim Menschen ben6tigten Pi~ressinnnd… Expand
Is this relevant?
2002
2002
Les auteurs presentent la methode de prospective SYSPAHMM (SYSteme-Processus-Agregats d’Hypotheses-Microscenarios-Macroscenarios… Expand
Is this relevant?
2002
2002
Cet article procede a une revue critique de la contribution du neo-institutionnalisme a l’analyse comparee des processus de… Expand
Is this relevant?
1993
1993
Abstract A splitting A1⨆A2 = A of an r.e. set A is called a Friedberg splitting if for any r.e. set W with W — A not r.e., A — Ai… Expand
Is this relevant?
Highly Cited
1991
Highly Cited
1991
?I. Notation. The notation not explicitly given here can be found in Rogers [Ro]. w denotes the set of nonnegative integers. For… Expand
Is this relevant?
1987
1987
We prove results about nonstandard formulas in models of Peano arithmetic which complement those of Kotlarski, Krajewski, and… Expand
Is this relevant?
1964
1964
In [3], Rogers discussed the concept of Godel numbering. He defined a semi-effective numbering, constructed a semi-lattice of… Expand
Is this relevant?