Isomorphisms of semirings of continuous binary relations on topological spaces

@article{Vechtomov2022IsomorphismsOS,
  title={Isomorphisms of semirings of continuous binary relations on topological spaces},
  author={E. M. Vechtomov},
  journal={Semigroup Forum},
  year={2022},
  volume={106},
  pages={327-331},
  url={https://api.semanticscholar.org/CorpusID:254298615}
}
We prove that for arbitrary topological spaces X and Y , each isomorphism between the semirings of all continuous binary relations on these spaces is induced by a unique homeomorphism between X and Y . 

Semigroups of Relatively Continuous Binary Relations and Their Isomorphisms

Abstract All isomorphisms between semigroups of relatively continuous binary relations defined on arbitrary topological spaces are described. As a corollary, the absolute definability of any

Об определяемости топологических пространств полугруппой непрерывных бинарных отношений

Исследуются вопросы определяемости топологических пространств $X$ новым производным алгебраическим объектом - полугруппой $CR(X)$ всех непрерывных бинарных отношений на них, рассматриваемой с

Specification of topological spaces by algebraic systems of continuous functions

This survey presents results on specification of topological spaces by various algebraic structures of continuous functions. Results are presented on specification of E-compact spaces by general

Isomorphisms of triform semigroups

For any point x, we use the symbol x to denote {(x, x)}. By a triform, we mean a triple (X, Fx, S[X]) where X is a nonempty set, Fx is a family of subsets of X, [X] is a family of subsets of X x X

Semirings and their applications

Preface. 1. Hemirings and semirings: definitions and examples. 2. Sets and relations with values in a semiring. 3. Building new semirings from old. 4. Some conditions on semirings. 5. Complemented

Relations binaires, fermetures, correspondances de Galois

© Bulletin de la S. M. F., 1948, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord