Skip to search formSkip to main content
You are currently offline. Some features of the site may not work correctly.

Lenstra–Lenstra–Lovász lattice basis reduction algorithm

Known as: LLL basis reduction method, Lenstra–Lenstra–Lovasz lattice basis reduction algorithm, Lenstra-Lenstra-Lovasz algorithm 
The Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm is a polynomial time lattice reduction algorithm invented by Arjen Lenstra… Expand
Wikipedia

Papers overview

Semantic Scholar uses AI to extract papers important to this topic.
2016
2016
Lenstra-Lenstra-Lovasz (LLL) Algorithm is an approximation algorithm of the shortest vector problem, which runs in polynomial… Expand
  • figure 1
  • figure 2
Is this relevant?
Highly Cited
2010
Highly Cited
2010
We construct a simple fully homomorphic encryption scheme, using only elementary modular arithmetic. We use Gentry’s technique to… Expand
  • figure 1
Is this relevant?
Highly Cited
2009
Highly Cited
2009
Recently, lattice-reduction-aided detectors have been proposed for multiinput multioutput (MIMO) systems to achieve performance… Expand
  • figure 1
  • table I
  • figure 2
  • table II
  • figure 3
Is this relevant?
Highly Cited
2007
Highly Cited
2007
A new viewpoint for adopting the lattice reduction in communication over multiple-input multiple-output (MIMO) broadcast channels… Expand
  • figure 1
  • figure 2
  • figure 3
  • figure 4
  • figure 5
Is this relevant?
Highly Cited
2005
Highly Cited
2005
We describe here the context of the LLL challenge of Genic Interaction extraction, the background of its organization and the… Expand
  • figure 1
  • table 1
  • table 2
  • table 3
Is this relevant?
Highly Cited
2003
Highly Cited
2003
We consider the lattice-reduction-aided detection scheme for 2/spl times/2 channels recently proposed by H. Yao and G.W. Wornell… Expand
  • figure 1
  • figure 2
  • figure 3
  • figure 4
Is this relevant?
Highly Cited
1999
Highly Cited
1999
O INTRODUCTION 1. Fundamental Problem of Algebra 2. Fundamental Problem of Classical Algebraic Geometry 3. Fundamental Problem of… Expand
Is this relevant?
1998
1998
Lattice basis reduction is an important problem in geometry of numbers with applications in combinatorial optimization, computer… Expand
Is this relevant?
Highly Cited
1991
Highly Cited
1991
This thesis investigates a new approach to lattice basis reduction suggested by M. Seysen. Seysen''s algorithm attempts to… Expand
Is this relevant?
Highly Cited
1988
Highly Cited
1988
Abstract The famous lattice basis reduction algorithm of Lovasz transforms a given integer lattice basis b 1 , …, b n ϵ Z n into… Expand
Is this relevant?