p-Coloring Classes of Torus Knots

@inproceedings{Taalman2006pColoringCO,
  title={p-Coloring Classes of Torus Knots},
  author={Laura Taalman},
  year={2006}
}
We develop a theorem for determining the p-colorability of any (m,n) torus knot. We also prove that any p-colorable (m, n) torus knot has exactly one p-coloring class. Finally, we show that every p-coloring of the braid projection of an (m, n) torus knot must use all of the p colors. MR Subject Classifications: 57M27, 05C15 

From This Paper

Figures, tables, and topics from this paper.

Citations

Publications citing this paper.
Showing 1-3 of 3 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Knot Theory

  • C. Livingston
  • The Mathematical Association of America…
  • 1993
Highly Influential
3 Excerpts

Colorings of Torus Knots and their Twist-Spins by Alexander Quandles over Finite Fields

  • S. Asami, K. Kuga
  • Technical Reports of Mathematical Science, Chiba…
  • 2004
2 Excerpts

K

  • K. Brownell
  • O’Neil, and L. Taalman, Pretzel Knots and…
  • 2003
1 Excerpt

A Polynomial Invariant for Knots via von Neumann Algebras , Bull

  • A. Cohen R. Butler, M. Dalton, L. Louder, R. Rettberg, A. Whitt
  • . Am . Math . Soc .
  • 2001

Explorations into Knot Theory: Colorability

  • R. Butler, A. Cohen, M. Dalton, L. Louder, R. Rettberg, A. Whitt
  • University of Utah
  • 2001
1 Excerpt

p-Colorability of Torus Knots

  • Y. Yasinnik
  • Research Science Institute
  • 2000
2 Excerpts

An Introduction to Knot Theory

  • W. B. Raymond Lickorish
  • Springer-Verlag, New York
  • 1997

A Polynomial Invariant for Knots via von Neumann Algebras

  • V. Jones
  • Bull. Am. Math. Soc. 12, 103-111,
  • 1985

Similar Papers

Loading similar papers…