on l-adic representations attached to modular forms II

  title={on l-adic representations attached to modular forms II},
  author={Kenneth A. Ribet},
  journal={Glasgow Mathematical Journal},
  pages={185 - 194}
  • K. Ribet
  • Published 1 October 1985
  • Mathematics
  • Glasgow Mathematical Journal
Suppose that is a newform of weight k on Г1(N). Thus f is in particular a cusp form on Г1(N), satisfying for all n≥1. Associated with f is a Dirichlet character such that for all, . 
Langlands base change for GL(2)
Let F be a totally real Galois number eld. We prove the existence of base change relative to the extension F=Q for every holomorphic newform of weight at least 2 and odd level, under simple local
A family of Calabi-Yau varieties and potential automorphy
We prove potential modularity theorems for l-adic representations of any dimension. From these results we deduce the Sato-Tate conjecture for all elliptic curves with nonintegral j -invariant defined
Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms
In this paper we prove a Gross-Zagier type formula for the anticyclotomic p-adic L-function of an elliptic modular form f of higher weight and of multiplicative type at p. For such f we also decribe
Abstract We show that the image of the adelic Galois representation attached to a non-CM modular form is open in the adelic points of a suitable algebraic subgroup of GL2 (defined by F. Momose). We
Control Theorem for Greenberg's Selmer Groups of Galois Deformations
Abstract We give sufficient conditions for the Selmer group of a p -adic deformation of a motive over a number field to be controlled. Then we apply this result to the Selmer groups of various Galois
On modular modℓ Galois representations with exceptional images
In this paper, we consider indivisibility of orders of Selmer groups for modular forms under quadratic twists. Then, we will give a generalization of a theorem of James–Ono and Kohnen–Ono.
Euler systems for Rankin–Selberg convolutions of modular forms
We construct a Euler system in the cohomology of the tensor product of the Galois representations attached to two modular forms, using elements in the higher Chow groups of products of modular


Modular Forms and ℓ-Adic Representations
This report is another attempt on the part of its author to come to terms with the circumstance that L-functions can be introduced not only in the context of automorphic forms, with which he has had
On ℓ-adic representations and congruences for coefficients of modular forms (II)
The work I shall describe in these lectures has two themes, a classical one going back to Ramanujan [8] and a modern one initiated by Serre [9] and Deligne [3]. To describe the classical theme, let
Les Constantes des Equations Fonctionnelles des Fonctions L
Les resultats essentiels de cet article sont les suivants. (A) On donne une demonstration simple du theoreme de Langlands [9] (deja prouve au signe pres par Dwork [6]) qui permet d’ecrire la
Formes Modulaires et Representations De GL(2)
Cet expose, qui ne pretend a aucune originalite, se veut complementaire au rapport de Robert [13] sur Jacquet-Langlands [9]. On peut le diviser en deux parties d’esprit assez different. Les
Sur la mauvaise réduction des courbes de Shimura
© Foundation Compositio Mathematica, 1986, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions
Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1986, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
Congruences et formes modulaires
© Association des collaborateurs de Nicolas Bourbaki, 1971-1972, tous droits réservés. L’accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l’accord avec les conditions
Letter I
This study was not only population-based but was the only one able to assess the baseline characteristics of all of the non-responders in the community, and provided somewhat different insights than those reported by O'Neill et al.
Formes modulaires de poids $1$
© Gauthier-Villars (Editions scientifiques et medicales Elsevier), 1974, tous droits reserves. L’acces aux archives de la revue « Annales scientifiques de l’E.N.S. » (http://www.
Formes modulaires et représentations e -adiques