aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction


MOTIVATION Receptor-ligand interactions are a central phenomenon in most biological systems. They are characterized by molecular recognition, a complex process mainly driven by physicochemical and structural properties of both receptor and ligand. Understanding and predicting these interactions are major steps towards protein ligand prediction, target identification, lead discovery and drug design. RESULTS We propose a novel graph-based-binding pocket signature called aCSM, which proved to be efficient and effective in handling large-scale protein ligand prediction tasks. We compare our results with those described in the literature and demonstrate that our algorithm overcomes the competitor's techniques. Finally, we predict novel ligands for proteins from Trypanosoma cruzi, the parasite responsible for Chagas disease, and validate them in silico via a docking protocol, showing the applicability of the method in suggesting ligands for pockets in a real-world scenario. AVAILABILITY AND IMPLEMENTATION Datasets and the source code are available at∼dpires/acsm. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

DOI: 10.1093/bioinformatics/btt058

Extracted Key Phrases

6 Figures and Tables

Citations per Year

171 Citations

Semantic Scholar estimates that this publication has 171 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Pires2013aCSMNG, title={aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction}, author={Douglas E. V. Pires and Raquel Cardoso de Melo Minardi and Carlos H. Silveira and Frederico F. Campos and Wagner Meira}, journal={Bioinformatics}, year={2013}, volume={29 7}, pages={855-61} }