Zur Theorie der Zeroringe

@article{Szele1949ZurTD,
  title={Zur Theorie der Zeroringe},
  author={Tibor Szele},
  journal={Mathematische Annalen},
  year={1949},
  volume={121},
  pages={242-246}
}
  • T. Szele
  • Published 1949
  • Mathematics
  • Mathematische Annalen
On torsion-free periodic rings
TLDR
Several large classes of periodic rings are characterized: periodic rings with identity, finite-rank torsion-free periodic rings, and rank-two torsional free periodic rings. Expand
Алгебраически компактные абелевы TI-группы
Абелева группа G называется TI-группой если любое ассоциативное кольцо с аддитивной группой G является филиальным. Абелева группа называется SI-группой ($$SI_H$$-группой), если любое (ассоциативное)Expand
Torsion-free rings
The aim of this paper is to study the correlation between the properties of rings and the structure of their additive groups. In this paper, all multiplications on reduced algebraically compactExpand
Additive groups of zero square rings
SummaryWe study abelian groups <Emphasis Type=”Italic”>G</Emphasis> that are additive groups of rings <Emphasis Type=”Italic”>R </Emphasis>such that <EmphasisExpand
Non-Abelian Nil Groups
An abelian group G is called a nil group if the only ring R with additive group R+ = G is the zero-ring, R2 = {0}. Similarly, a non-abelian group G is defined to be a nil group if the onlyExpand
Cocyclic planar near-rings
...
1
2
...

References

SHOWING 1-2 OF 2 REFERENCES