Zn2+-dependent Activation of the Trk Signaling Pathway Induces Phosphorylation of the Brain-enriched Tyrosine Phosphatase STEP: MOLECULAR BASIS FOR ZN2+-INDUCED ERK MAPK ACTIVATION.

@article{Poddar2016Zn2dependentAO,
  title={Zn2+-dependent Activation of the Trk Signaling Pathway Induces Phosphorylation of the Brain-enriched Tyrosine Phosphatase STEP: MOLECULAR BASIS FOR ZN2+-INDUCED ERK MAPK ACTIVATION.},
  author={Ranjana Poddar and Sathyanarayanan Rajagopal and C. William Shuttleworth and Surojit Paul},
  journal={The Journal of biological chemistry},
  year={2016},
  volume={291 2},
  pages={813-25}
}
Excessive release of Zn(2+) in the brain is implicated in the progression of acute brain injuries. Although several signaling cascades have been reported to be involved in Zn(2+)-induced neurotoxicity, a potential contribution of tyrosine phosphatases in this process has not been well explored. Here we show that exposure to high concentrations of Zn(2+) led to a progressive increase in phosphorylation of the striatal-enriched phosphatase (STEP), a component of the excitotoxic-signaling pathway… CONTINUE READING