Zeta Series Generating Function Transformations Related To

@inproceedings{Schmidt2017ZetaSG,
  title={Zeta Series Generating Function Transformations Related To},
  author={Maxie D. Schmidt},
  year={2017}
}
We define a new class of generating function transformations related to polylogarithm functions, Dirichlet series, and Euler sums. These transformations are given by an infinite sum over the jth derivatives of a sequence generating function and sets of generalized coefficients satisfying a non-triangular recurrence relation in two variables. The generalized transformation coefficients share a number of analogous properties with the Stirling numbers of the second kind and the known harmonic… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Various applications of the (exponential) Bell polynomials

  • D. F. Connon
  • arXiv:Math.CA/1001.2835
  • 2010
1 Excerpt

and C

  • F.W.J. Olver, D. W. Lozier, R. F. Boisvert
  • W. Clark, eds., NIST Handbook of Mathematical…
  • 2010

The dilogarithm function

  • D. Zaiger
  • Frontiers in number theory, physics, and geometry…
  • 2007
1 Excerpt

One of the numbers ζ(5)

  • W. Zudilin
  • ζ(7), ζ(9), ζ(11) is irrational, Uspekhi Mat…
  • 2001
1 Excerpt

Enumerative Combinatorics

  • R. P. Stanley
  • Vol. 2, Cambridge
  • 1999
1 Excerpt

Similar Papers

Loading similar papers…