Corpus ID: 8462134

Zero Divisors and L p (G), II

@article{Linnell2001ZeroDA,
  title={Zero Divisors and L p (G), II},
  author={P. Linnell and M. Puls},
  journal={arXiv: Functional Analysis},
  year={2001}
}
  • P. Linnell, M. Puls
  • Published 2001
  • Mathematics
  • arXiv: Functional Analysis
  • Let G be a discrete group, let p ≥ 1, and let L p (G) denote the Banach space { g∈G agg | g∈G |ag| p < ∞}. The following problem will be studied: Given 0 � α ∈ CG and 0 � β ∈ Lp(G), is α ∗ β � 0? We will concentrate on the case G is a free abelian or free group. CG ⊆ L p (G) ⊆ C0(G) ⊆ L ∞ (G). For α = g∈G agg ∈ L 1 (G) and β = g∈G bgg ∈ L p (G), we define a multiplication L 1 (G) × L p (G) → L p (G )b y 
    5 Citations

    References

    SHOWING 1-10 OF 27 REFERENCES
    Spans of translates in L p (G)
    • 15
    Zero Divisors and L 2 (g)
    • 10
    • PDF
    Linear independence of translations
    • 18
    • PDF
    Groups Acting on Graphs
    • 286
    C. R. Acad. Sci. Paris Sér. I Math
    • C. R. Acad. Sci. Paris Sér. I Math
    • 1992
    Cohen and Leonede DeMichele . The radial FourierStieltjes algebra of free groups
      Convex Functions
      • 1,627
      Convex functions. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers
      • New York-London,
      • 1973
      Difference equations over locally compact abelian groups
      • 29
      • PDF