Zagier's conjecture on L(E,2)

  title={Zagier's conjecture on L(E,2)},
  author={Alexander Goncharov and Anatoly Levin},
In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups $K_2(E)$ and $K_1(E)$ for an elliptic curve $E$ over an arbitrary field $k$. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on $L(E,2)$ for modular elliptic curves over $\Bbb Q$. 


Publications referenced by this paper.

Advanced topics in the arithmetic of elliptic curves

  • J Silverman
  • Advanced topics in the arithmetic of elliptic…
  • 1994

Elliptic polylogarithms. Symposium in pure mathematics

  • A A Beilinson, A M Levin
  • Elliptic polylogarithms. Symposium in pure…
  • 1994

Interprétation motivique de la conjecture de Zagier in Symp. in Pure Math

  • A A Beilinson, P Deligne
  • Interprétation motivique de la conjecture de…
  • 1994

Polylogarithms and motivic Galois groups Symposium in pure mathematics

  • G1 ] Goncharov
  • Polylogarithms and motivic Galois groups…
  • 1994

Relative Milnor K-theory K-theory

  • M Levine
  • Relative Milnor K-theory K-theory
  • 1992

K 3 of a field and Bloch's group

  • S Suslin
  • Proceedings of the Steklov Institute of…
  • 1991

Polylogarithms, Dedekind zeta functions and the algebraic Ktheory of fields, Arithmetic Algebraic Geometry

  • D Zagier
  • Prog. Math
  • 1991

The Bloch-Wigner-Ramakrishnan polylogarithm function Math

  • D Zagier
  • Ann
  • 1990

Groups related to scissor congruence groups Contemporary math

  • S Li ] Lichtenbaum
  • Groups related to scissor congruence groups…
  • 1989

Similar Papers

Loading similar papers…