Witt Groups of Complex Cellular Varieties

  title={Witt Groups of Complex Cellular Varieties},
  author={Marcus Zibrowius},
  • Marcus Zibrowius
  • Published 2010
We show that the Grothendieck-Witt and Witt groups of smooth complex cellular varieties can be identified with their topological KO-groups. As an application, we deduce the values of the Witt groups of all irreducible hermitian symmetric spaces, including smooth complex quadrics, spinor varieties and symplectic Grassmannians. 2010 Mathematics Subject Classification: Primary 11E81; Secondary 19G99, 19L99, 32M15 


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 29 references

Trivial Witt groups of flag varieties (2011), available at arxiv.org/abs/1103.4412

  • Baptiste Calmès, Jean Fasel
  • 2011

Hermitian K-theory of exact categories

  • Marco Schlichting
  • J. K-Theory
  • 2010

Vector bundles and K-theory

  • Allen Hatcher
  • 2009

Opérations sur la K-théorie algébrique et régulateurs via la théorie homotopique des schémas

  • Joël Riou
  • Ph. D. Thesis, l’Université Paris 7 – Denis…
  • 2006

An introduction to A1-homotopy theory, Contemporary developments in algebraic K-theory, ICTP Lect. Notes, XV

  • Fabien Morel
  • Abdus Salam Int. Cent. Theoret. Phys., Trieste,
  • 2004

Coniveau spectral sequence and motivic cohomology of quadrics and classifying spaces (2004), available at www.math.uiuc.edu/K-theory/0709

  • Nobuaki Yagita
  • 2004

Grothendieck-Witt groups of triangulated categories (2003), available at www.math.uiuc.edu/K-theory/0643

  • Charles Walter
  • 2003

Homotopy invariance of coherent

  • Stefan Gille
  • Witt groups, Math. Z
  • 2003

Similar Papers

Loading similar papers…