Where Are the Switches on This Thing?


Controlled responses differ from reflexes because they can be turned off and on. This is a critical part of what distinguishes animals from automatons. How does the nervous system gate the flow of information so that a sensory stimulus that elicits a strong response on some occasions, evokes no response on others? A related question concerns how the flow of sensory information is altered when we pay close attention to something as opposed to when we ignore it. Most research in neuroscience focuses on circuits that directly respond to stimuli or generate motor output. But what of the circuits and mechanisms that control these direct responses, that modulate them and turn them off and on? Self-regulated switching is vital to the operation of complex machines such as computers. The essential building block of a computer is a voltage-gated switch, the transistor, that is turned off and on by the same sorts of currents that it controls. By analogy, the question of my title refers to neural pathways that not only carry the action potentials that arise from neural activity, but are switched off and on by neural activity as well. By what biophysical mechanisms could this occur? In the spirit of this volume, the point of this contribution is to raise a question, not to answer it. I will discuss three possible mechanisms— neuromodulation, inhibition, and gain modulation—and assess the merits and short-comings of each of them. I have my prejudices, which will become obvious, but I do not want to rule out any of these as candidates, nor do I want to leave the impression that the list is complete or that the problem is in any sense solved.

Extracted Key Phrases

4 Figures and Tables


Citations per Year

67 Citations

Semantic Scholar estimates that this publication has 67 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Abbott2005WhereAT, title={Where Are the Switches on This Thing?}, author={L. F. Abbott}, year={2005} }