When are subset sums equidistributed modulo m?

@article{Wagon1994WhenAS,
  title={When are subset sums equidistributed modulo m?},
  author={Stan Wagon and Herbert S. Wilf},
  journal={Electr. J. Comb.},
  year={1994},
  volume={1}
}
For a triple (n, t,m) of positive integers, we attach to each t-subset S = {a1, . . . , at} ⊆ {1, . . . , n} the sum f(S) = a1 + · · · + at (modulo m). We ask: for which triples (n, t,m) are the ( n t ) values of f(S) uniformly distributed in the residue classes mod m? The obvious necessary condition, that m divides ( n t ) , is not sufficient, but a q-analogue of that condition is both necessary and sufficient, namely: q − 1 q − 1 divides the Gaussian polynomial ( n t ) 

From This Paper

Topics from this paper.
3 Citations
5 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-5 of 5 references

Advanced Combinatorics, Dordrecht: D

  • L. Comtet
  • Reidel,
  • 1974
Highly Influential
8 Excerpts

Gaussian binomial coefficients, Elem

  • G. Pólya, G. L. Alexanderson
  • der Math
  • 1971
Highly Influential
9 Excerpts

Subsets whose sums are congruent, Problem E3472

  • H. Snevily
  • Amer. Math. Monthly
  • 1993
Highly Influential
3 Excerpts

O’Hara’s constructive proof of the unimodality of the Gaussian coefficients

  • D. Zeilberger, Kathy
  • Amer. Math. Monthly
  • 1989
3 Excerpts

The power of a prime that divides a binomial coefficient

  • D. E. Knuth, H. S. Wilf
  • J. für die reine u. angew. Math
  • 1989
2 Excerpts

Similar Papers

Loading similar papers…