Wear of the Charité® lumbar intervertebral disc replacement investigated using an electro-mechanical spine simulator

Abstract

The Charité(®) lumbar intervertebral disc replacement was subjected to wear testing in an electro-mechanical spine simulator. Sinusoidally varying compression (0.6-2 kN, frequency 2 Hz), rotation (±2°, frequency 1 Hz), flexion-extension (6° to -3°, frequency 1 Hz) and lateral bending (±2°, frequency 1 Hz) were applied out of phase to specimens immersed in diluted calf serum at 37 °C. The mass of the ultra-high-molecular weight polyethylene component of the device was measured at intervals of 0.5, 1, 2, 3, 4 and 5 million cycles; its volume was also measured by micro-computed tomography. Total mass and volume losses were 60.3 ± 4.6 mg (mean ± standard deviation) and 64.6 ± 6.0 mm(3). Corresponding wear rates were 12.0 ± 1.4 mg per million cycles and 12.8 ± 1.2 mm(3) per million cycles; the rate of loss of volume corresponds to a mass loss of 11.9 ± 1.1 mg per million cycles, that is, the two sets of measurements of wear agree closely. Wear rates also agree closely with measurements made in another laboratory using the same protocol but using a conventional mechanical spine simulator.

DOI: 10.1177/0954411915576537

Extracted Key Phrases

2 Figures and Tables

Cite this paper

@inproceedings{Moghadas2015WearOT, title={Wear of the Charit{\'e}® lumbar intervertebral disc replacement investigated using an electro-mechanical spine simulator}, author={Parshia M Moghadas and Aziza Mahomed and Duncan E. T. Shepherd and David W. L. Hukins}, booktitle={Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine}, year={2015} }