A dominating set \(D \subset V(G)\) is a weakly connected dominating set in \(G\) if the subgraph \(G[D]_w = (N_{G}[D],E_w)\) weakly induced by \(D\) is connected, where \(E_w\) is the set of all edges with at least one vertex in \(D\). The weakly connected domination number \(\gamma_w(G)\) of a graph \(G\) is the minimum cardinality among all weakly connected dominating sets in \(G\). The graph is said to be weakly connected domination critical (\(\gamma_w\)-critical) if for each \(u, v \in V… CONTINUE READING