Weak Ucp and Perturbed Monopole Equations

@inproceedings{Marcolli2008WeakUA,
  title={Weak Ucp and Perturbed Monopole Equations},
  author={Matilde Marcolli and Baiqun Wang},
  year={2008}
}
We give a simple proof of weak Unique Continuation Property for perturbed Dirac operators, using the Carleman inequality. We apply the result to a class of perturbations of the Seiberg–Witten monopole equations that arise in Floer theory. 

From This Paper

Figures, tables, and topics from this paper.
6 Citations
22 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 22 references

Equivariant Seiberg–Witten Floer homology, Communications in Analysis and Geometry

  • M. Marcolli, B. L. Wang
  • 2001
Highly Influential
6 Excerpts

Unique continuation for some systems of partial differential equations, Applicable Analysis

  • N. Weck
  • 1982
Highly Influential
2 Excerpts

Equivariant Seiberg – Witten Floer homology

  • C. Manolescu, M. Marcolli, B. L. Wang
  • Communica - tions in Analysis and Geometry
  • 2001

The unique continuation property for Dirac operators – revisited , Geometry and topology : Aarhus ( 1998 )

  • B. Booss – Bavnbek
  • Contemp . Math .
  • 2000

The unique continuation property for Dirac operators – revisited , Geometry and topology : Aarhus (

  • B. Booss – Bavnbek
  • ) , Contemp . Math .
  • 1998

The unique continuation property for Dirac operators – revisited, Geometry and topology

  • B. Booss–Bavnbek
  • Contemp. Math
  • 1998
2 Excerpts

The Seiberg-Witten equations and four-manifolds with boundary

  • K. Frøyshov
  • Math. Res. Lett. 3 No
  • 1996
2 Excerpts

Similar Papers

Loading similar papers…