Corpus ID: 117506933

Weak Lefschetz property and stellar subdivisions of Gorenstein complexes

@article{Boehm2020WeakLP,
  title={Weak Lefschetz property and stellar subdivisions of Gorenstein complexes},
  author={Janko Boehm and Stavros A. Papadakis},
  journal={Australas. J Comb.},
  year={2020},
  volume={76},
  pages={266-287}
}
Assume sigma is a face of a Gorenstein* simplicial complex D. We investigate the question of whether the Weak Lefschetz Property of the Stanley-Reisner ring k[D] (over an infinite field k) is equivalent to the same property of the Stanley-Reisner ring k[D_sigma] of the stellar subdivision D_sigma. We prove that this is the case if the dimension of sigma is big compared to the codimension. 
4 Citations
Toric spaces and face enumeration on simplicial manifolds
  • 1
  • PDF
Tom & Jerry triples with an application to Fano 3-folds.
  • PDF
The face numbers of homology spheres
  • PDF

References

SHOWING 1-10 OF 41 REFERENCES
Stellar subdivisions and Stanley-Reisner rings of Gorenstein complexes
  • 5
  • PDF
Lefschetz properties and basic constructions on simplicial spheres
  • 27
  • PDF
The strength of the weak Lefschetz property
  • 25
  • PDF
A tour of the Weak and Strong Lefschetz Properties
  • 80
  • PDF
Kustin–Miller unprojection without complexes
  • 76
  • PDF
Hyperplane sections and the subtlety of the Lefschetz properties
  • 13
  • PDF
The Lefschetz properties
  • 34
Algebraic shifting of strongly edge decomposable spheres
  • S. Murai
  • Computer Science, Mathematics
  • J. Comb. Theory, Ser. A
  • 2010
  • 22
  • PDF
...
1
2
3
4
5
...