Wavelet Decomposition Techniques and Hardy Inequalities for Function Spaces on Cellular Domains

  title={Wavelet Decomposition Techniques and Hardy Inequalities for Function Spaces on Cellular Domains},
  author={B. Scharf},
A rather tricky question is the construction of wavelet bases on domains for suitable function spaces (Sobolev, Besov, Triebel-Lizorkin type). In his monograph from 2008, Triebel presented an approach how to construct wavelet (Riesz) bases in function spaces of Besov and Triebel-Lizorkin type on cellular domains, in particular on the cube. However, he had to exclude essential exceptional values of the smoothness parameter s, for instance the theorems do not cover the Sobolev space W 1 2 (Q) on… CONTINUE READING

From This Paper

Topics from this paper.
1 Citations
20 References
Similar Papers


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 20 references

Function spaces and wavelets on domains

  • H. Triebel
  • Publishing House European Math. Soc., Zürich,
  • 2008
Highly Influential
7 Excerpts

The Structure of Functions

  • H. Triebel
  • Birkhäuser, Basel,
  • 2001
Highly Influential
6 Excerpts

Spline bases in classical function spaces on compact C∞ manifolds, I

  • Z. Ciesielski, T. Figiel
  • Studia Math.,
  • 1983
Highly Influential
10 Excerpts

Wavelets in function spaces on cellular

  • B. Scharf
  • domains. arXiv:1302.3751,
  • 2013

Envelopes and Sharp Embeddings of Function Spaces

  • D. D. Haroske
  • 2010
2 Excerpts

The Hardy Inequality: About its History and some related Results

  • A. Kufner, L. Maligranda, L. Persson
  • Vydavatelský servis, Pilsen,
  • 2007
1 Excerpt

Wavelet bases on a manifold

  • A. Jouini, M. Kratou
  • J. Funct. Anal.,
  • 2007
1 Excerpt

Similar Papers

Loading similar papers…