WKB and Turning Point Theory for Second-order Difference Equations

@inproceedings{Geronimo2004WKBAT,
  title={WKB and Turning Point Theory for Second-order Difference Equations},
  author={Jeffrey S. Geronimo and O. Bruno and Walter Van Assche},
  year={2004}
}
A turning point method for difference equations is developed. This method is coupled with the LG-WKB method via matching to provide approximate solutions to the initial value problem. The techniques developed are used to provide strong asymptotics for Hermite polynomials. Mathematics Subject Classification (2000). Primary 39A10; Secondary 41A60, 65Q05. 

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

A Continuum Limit of the Toda Lattice

  • DM P. Deift, K.T.-R. McLaughlin
  • Memoirs of AMS
  • 1998

Rigorous WKB method for finite-order linear recurrence relations with smooth coefficients

  • O. Costin, R. Costin
  • SIAM J. Math. Anal
  • 1996

On asymptotic properties of zeros of orthogonal polynomi

  • J. S. Dehisa Nevai
  • Math . Proc . Cambridge Philos . Soc .
  • 1985

Probabilistic proofs of asymptotic formulas for some classical polynomials, Math

  • M. Maejina, W. Van Assche
  • Proc. Cambridge Philos. Soc
  • 1985

Dehisa, On asymptotic properties of zeros of orthogonal polynomials

  • J. S. ND P. Nevai
  • SIAM J. Math. Anal
  • 1979

WKB method for three - term recurrence relations and quasienergies of an anharmonic oscillator , Theoret

  • R. Costin Costin
  • . and Math . Phys .
  • 1978

WKB method for three-term recurrence relations and quasienergies of an anharmonic oscillator

  • P. A. Braun
  • Theoret. and Math. Phys
  • 1978

Semiclassical analysis of 3γ and 6γ coefficients for quantum mechanical of angular momentum

  • K. Schulten, R. G. Gordon
  • JMP
  • 1975

Asymptotics for Orthogonal Polynomial, Lectures Notes in Mathematics 1265 Springer-Verlag

  • W. Van Assche
  • 1967

Similar Papers

Loading similar papers…