WARING’S NUMBER IN A FINITE FIELD

@inproceedings{Cipra2009WARINGSNI,
  title={WARING’S NUMBER IN A FINITE FIELD},
  author={James Arthur Cipra},
  year={2009}
}
  • James Arthur Cipra
  • Published 2009
Let p be a prime, n be an integer, k | pn − 1, and γ(k, pn) be the minimal value of s such that every number in Fpn is a sum of s kth powers. A known upper bound is improved to γ(k, pn) " nk1/n and generalizations of Heilbronn’s conjectures are proven for an arbitrary finite field. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 12 REFERENCES

Combinational Properties of Sets of Residues Modulo a Prime and the Erdős-Graham Problem

  • A. A. Glibichuk
  • Mathematical Notes 79 (), No. 3 , 356-365…
  • 2009

Sum-product estimates applied to Waring’s problem mod p

  • T. Cochrane, C. Pinner
  • Integers 8
  • 2008
1 Excerpt

A note on Waring’s problem in finite fields

  • A. Winterhof
  • Acta Arith. 4
  • 2001
1 Excerpt

On Waring’s problem in finite fields

  • A. Winterhof
  • Acta Arith. 87
  • 1998

On estimates of Gaussian sums and Waring’s problem for a prime modulus

  • S. V. Konyagin
  • Trudy Mat. Inst. Stelov. 198 () 111-124 (Russian…
  • 1994
1 Excerpt

Sums of mth powers in algebraic and abelian number fields

  • M. Bhaskaran
  • Arch. Math. (Basel) 17 (), 497-504; Correction…
  • 1972

On diagonal forms over finite fields

  • A. Tietäväinen
  • Ann. Univ. Turku Ser. A I 118
  • 1968

Similar Papers

Loading similar papers…