Vinogradov's Integral and Bounds for the Riemann Zeta Function

@article{Ford2002VinogradovsIA,
  title={Vinogradov's Integral and Bounds for the Riemann Zeta Function},
  author={Kevin Ford},
  journal={Proceedings of The London Mathematical Society},
  year={2002},
  volume={85},
  pages={565-633}
}
  • Kevin Ford
  • Published 2002
  • Mathematics
  • Proceedings of The London Mathematical Society
  • The main result is an upper bound for the Riemann zeta function in the critical strip: $\zeta(\sigma + it) \le A|t|^{B(1 - \sigma)^{3/2}} \log^{2/3} |t|$ with $A = 76.2$ and $B = 4.45$, valid for $\frac12 \le \sigma \le 1$ and $|t| \ge 3$. The previous best constant $B$ was 18.5. Tools include a variant of the Korobov–Vinogradov method of bounding exponential sums, an explicit version of T. D. Wooley's bounds for Vinogradov's integral, and explicit bounds for mean values of exponential sums… CONTINUE READING

    Tables from this paper.

    Zero-free regions for the Riemann zeta function
    • 39
    • PDF
    Nested efficient congruencing and relatives of Vinogradov's mean value theorem
    • 37
    • PDF
    The Mertens Conjecture Revisited
    • 23
    • PDF
    On the zeta function on the line Re(s) = 1
    • 5
    • PDF
    On a Hybrid Fourth Moment Involving the Riemann Zeta-Function
    • 1
    • PDF
    A new upper bound for $|\zeta(1+ it)|$
    • 5
    • PDF

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 29 REFERENCES
    On exponential sums over smooth numbers.
    • 21
    Topics in Multiplicative Number Theory
    • 527
    • Highly Influential
    • PDF
    Approximate formulas for some functions of prime numbers
    • 1,392
    • Highly Influential
    • PDF
    The Riemann zeta-function
    • 318
    A note on simultaneous congruences
    • 34
    A new estimate for ζ(1 + it)
    • 1958
    Dirichlet divisor problem in number fields
    • 10
    • Highly Influential