• Corpus ID: 119696723

# Very accurate approximations for the elliptic integrals of the second kind in terms of Stolarsky means

@article{Yang2015VeryAA,
title={Very accurate approximations for the elliptic integrals of the second kind in terms of Stolarsky means},
author={Zhen-Hang Yang},
journal={arXiv: Classical Analysis and ODEs},
year={2015}
}
• Zhen-Hang Yang
• Published 22 August 2015
• Mathematics
• arXiv: Classical Analysis and ODEs
For $a,b>0$ with $a\neq b$, the Stolarsky means are defined by% \begin{equation*} S_{p,q}\left(a,b\right) =\left({\dfrac{q(a^{p}-b^{p})}{p(a^{q}-b^{q})}}% \right) ^{1/(p-q)}\text{if}pq\left(p-q\right) \neq 0 \end{equation*}% and $S_{p,q}\left(a,b\right)$ is defined as its limits at $p=0$ or $q=0$ or $p=q$ if $pq\left(p-q\right) =0$. The complete elliptic integrals of the second kind $E$ is defined on $\left(0,1\right)$ by% \begin{equation*} E\left(r\right) =\int_{0}^{\pi /2}\sqrt{1-r^{2}\sin…
2 Citations
On approximating the modified Bessel function of the first kind and Toader-Qi mean
• Mathematics
• 2016
In the article, we present several sharp bounds for the modified Bessel function of the first kind I0(t)=∑n=0∞t2n22n(n!)2$I_{0}(t)=\sum_{n=0}^{\infty}\frac{t^{2n}}{2^{2n}(n!)^{2}}$ and the Toader-Qi