Vassiliev and Quantum Invariants of Braids

  title={Vassiliev and Quantum Invariants of Braids},
  author={Dror Bar-Natan},
We prove that braid invariants coming from quantum gl(N) separate braids, by recalling that these invariants (properly decomposed) are all Vassiliev invariants, showing that all Vassiliev invariants of braids arise in this way, and reproving that Vassiliev invariants separate braids. We discuss some corollaries of this result and of our method of proof. 

From This Paper

Figures, tables, and topics from this paper.
11 Citations
19 References
Similar Papers


Publications referenced by this paper.
Showing 1-10 of 19 references

Vassiliev’s knot invariants

  • M. Kontsevich
  • Adv. in Sov. Math.,
  • 1993
Highly Influential
4 Excerpts

A new form of the Conway-Jones polynomial of oriented links, in Topology of manifolds and varieties (O

  • M. Gusarov
  • Viro, editor), Amer. Math. Soc., Providence
  • 1994
1 Excerpt

Quantum groups, Springer-Verlag

  • C. Kassel
  • GTM 155,
  • 1994
1 Excerpt

Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds

  • P. Cartier
  • C. R. Acad. Sci. Paris 316 Série I
  • 1993
1 Excerpt

Knot polynomials and Vassiliev’s

  • X-S. Lin
  • invariants, Inv. Math
  • 1993
2 Excerpts

Weights of Feynman diagrams, link polynomials and Vassiliev knot invariants

  • S. Piunikhin
  • Moscow State Univ. preprint,
  • 1992
1 Excerpt

Similar Papers

Loading similar papers…