# Variants of Robinson's essentially undecidable theoryR

@article{Jones1983VariantsOR, title={Variants of Robinson's essentially undecidable theoryR}, author={James P. Jones and John C. Shepherdson}, journal={Archiv f{\"u}r mathematische Logik und Grundlagenforschung}, year={1983}, volume={23}, pages={61-64} }

AbstractCobham has observed that Raphael Robinson's well known essentially undecidable theoryR remains essentially undecidable if the fifth axiom scheme
$$\left( {x \leqq \bar n \vee \bar n \leqq x} \right)$$
is omitted. We note that whether the resulting system is in a sense “minimal essentially undecidable” depends on what the basic constants are taken to be. We give an essentially undecidable theory based on three axiom schemes involving only multiplication and less than or equals.

## 20 Citations

HOW MUCH PROPOSITIONAL LOGIC SUFFICES FOR ROSSER’S ESSENTIAL UNDECIDABILITY THEOREM?

- Philosophy, Computer ScienceThe Review of Symbolic Logic
- 2020

This result is based on a structural version of the undecidability argument introduced by Kleene and it is shown that it goes well beyond the scope of the Boolean, intuitionistic, or fuzzy logic.

Arithmetic on semigroups

- MathematicsThe Journal of Symbolic Logic
- 2009

Robinson's arithmetic Q is shown to be mutually interpretable with TC, a weak theory of concatenation introduced by Grzegorczyk, thus confirming their claim that F is essentially undecidable.

Weak Theories and Essential Incompleteness

- Philosophy
- 2013

This paper is motivated by the following question: what is the weakest theory that is essentially incomplete or essentially undecidable? An axiomatic theory T is complete if it is consistent and for…

On Rudimentarity, Primitive Recursivity and Representability

- MathematicsReports Math. Log.
- 2020

A simple and elementary proof of the equivalence of the weak representability with the (strong) representability of functions in sufficiently strong arithmetical theories is presented.

Note on some misinterpretations of G\"{o}del's incompleteness theorems

- Philosophy
- 2019

In this paper, I evaluate some formal and informal misinterpretations of Godel's incompleteness theorems from the literature and the folklore, as well as clarify some misunderstandings about Godel's…

Weak theories of concatenation and minimal essentially undecidable theories

- MathematicsArch. Math. Log.
- 2014

It is proved that the theory of concatenation WTC-ε, which is a weak subtheory of Grzegorczyk’s theory, is a minimal essentially undecidable theory, and that if one omits an axiom scheme from the theory, then the resulting theory is no longer essentially Undecidable.

FINDING THE LIMIT OF INCOMPLETENESS I

- MathematicsThe Bulletin of Symbolic Logic
- 2020

There is no theory with a minimal degree of Turing reducibility for which $\textsf {G1}$ holds, but it is shown that there are many such theories based on Jeřábek’s work using some model theory such that for any Turing degree, there is a theory T with Turing degree such that G1 holds.

Gödel incompleteness theorems and the limits of their applicability. I

- Mathematics, Philosophy
- 2010

This is a survey of results related to the Gödel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Gödel's own formulations along with modern…

Gödel incompleteness theorems and the limits of their applicability. I

- Mathematics, Philosophy
- 2011

This is a survey of results related to the Godel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Godel's own formulations along with modern…

CURRENT RESEARCH ON GÖDEL’S INCOMPLETENESS THEOREMS

- Philosophy, MathematicsThe Bulletin of Symbolic Logic
- 2021

A survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs, the limit of the applicability of Gödel's first incomple completeness theorem, and the limitof the applicable of Gö DEL’S second incompletteness theorem.

## References

SHOWING 1-4 OF 4 REFERENCES

Definability and Decision Problems in Arithmetic

- Mathematics, Computer ScienceJ. Symb. Log.
- 1949

It is shown that both addition and multiplication can be defined arithmetically in terms of successor and the relation of divisibility | (where x|y means x divides y).

On the strong representability of numbertheoretic functions

- 1962