Variable steps for reversible integration methods

@article{Stoffer1995VariableSF,
  title={Variable steps for reversible integration methods},
  author={D. Stoffer},
  journal={Computing},
  year={1995},
  volume={55},
  pages={1-22}
}
Conventional variable-step implementation of symplectic or reversible integration methods destroy the symplectic or reversible structure of the system. We show that to preserve the symplectic structure of a method the step size has to be kept almost constant. For reversible methods variable steps are possible but the step size has to be equal for “reflected” steps. We demonstrate possible ways to construct reversible variable step size methods. Numerical experiments show that for the Kepler… CONTINUE READING
35 Citations
21 References
Similar Papers

Citations

Publications citing this paper.
Showing 1-10 of 35 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 21 references

An explicit Runge-Kutta-Nystr6m method is canonical if and only if its adjoint is explicit

  • D. Okunbor, R. D. Skeel
  • SIAM J. Number
  • 1992
Highly Influential
3 Excerpts

On the global error of linear multistep methods

  • D. Stoffer
  • 1994

On the global error of linear multistep methods. In: Geometric behaviour of numerical integration methods, submitted as Habilitationsschrift

  • D. Stoffer
  • ETH-Ziirich,
  • 1994
2 Excerpts

A survey of open problems in symplectic integration

  • R. I. McLachlan, C. Scovel
  • Preprint
  • 1993
1 Excerpt

General linear methods: connection to one-step methods and invariant curves

  • D. Stoffer
  • Numer. Math
  • 1993
1 Excerpt

Recent progress in the theory and application of symplectie integrators

  • M. Yoshida
  • Celestial Mech. Dynam. Astronom
  • 1993
1 Excerpt

The necessary condition for a Runge-Kutta scheme to be symplectic for Hamiltonian systems

  • Tang, Y.-F
  • Comp. Math. Appl
  • 1993
1 Excerpt

Symplectic integrators for Hamiltonian problems: an overview

  • J. M. Sanz-Serna
  • Acta Numer
  • 1992
1 Excerpt

Invariant curves for variable step size integrators

  • D. Stoffer, K. Nipp
  • BIT 31,
  • 1991
1 Excerpt

Similar Papers

Loading similar papers…