Variétés abéliennes CM et grosse monodromie finie sauvage

  title={Vari{\'e}t{\'e}s ab{\'e}liennes CM et grosse monodromie finie sauvage},
  author={S'everin Philip},
  journal={Journal of Number Theory},
1 Citations
On the semi‐stability degree for abelian varieties
  • S. Philip
  • Mathematics
    Bulletin of the London Mathematical Society
  • 2022
For an abelian variety A over a number field we study bounds depending only on the dimension of A for the minimal degree d(A) of a field extension over which A acquires semi-stable reduction. We


Degré de définition des endomorphismes d'une variété abélienne
— Given an abelian variety over a field of zero characteristic, we give an optimal explicit upper bound depending only on the dimension for the degree of the smallest extension of the base field over
Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive
AbstractLet K be a field of characteristics 0 complete with respect to a discrete valuation v, with a perfect residue field of characteristic p>0. Let $$\vec K$$ be an algebraic closure of K and Knr
The theory of classical valuations
1 Absolute Values of Fields.- 1.1. First Examples.- 1.2. Generalities About Absolute Values of a Field.- 1.3. Absolute Values of Q.- 1.4. The Independence of Absolute Values.- 1.5. The Topology of
Elementary and Analytic Theory of Algebraic Numbers
1. Dedekind Domains and Valuations.- 2. Algebraic Numbers and Integers.- 3. Units and Ideal Classes.- 4. Extensions.- 5. P-adic Fields.- 6. Applications of the Theory of P-adic Fields.- 7. Analytical