Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors


Acoustic wave resonator techniques are widely used in in-liquid biochemical applications. The main challenges remaining are the improvement of sensitivity and limit of detection, as well as multianalysis capabilities and reliability. The sensitivity improvement issue has been addressed by increasing the sensor frequency, using different techniques such as high fundamental frequency quartz crystal microbalances (QCMs), surface generated acoustic waves (SGAWs) and film bulk acoustic resonators (FBARs). However, this sensitivity improvement has not been completely matched in terms of limit of detection. The decrease on frequency stability due to the increase of the phase noise, particularly in oscillators, has made it impossible to increase the resolution. A new concept of sensor characterization at constant frequency has been recently proposed based on the phase/mass sensitivity equation: Δφ/Δm ≈ -1/m(L), where m(L) is the liquid mass perturbed by the resonator. The validation of the new concept is presented in this article. An immunosensor application for the detection of a low molecular weight pollutant, the insecticide carbaryl, has been chosen as a validation model.

DOI: 10.3390/s110504702

Extracted Key Phrases

9 Figures and Tables

Cite this paper

@inproceedings{Montagut2011ValidationOA, title={Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors}, author={Yeison Montagut and Jos{\'e}-Vicente Garc{\'i}a and Yolanda Jim{\'e}nez and Carmen March-Iborra and {\'A}ngel Montoya and Antonio Arnau}, booktitle={Sensors}, year={2011} }