• Corpus ID: 124104587

Valeurs des fonctions zêta aux entiers négatifs

@inproceedings{Fresnel1971ValeursDF,
  title={Valeurs des fonctions z{\^e}ta aux entiers n{\'e}gatifs},
  author={Jean Fresnel},
  year={1971}
}
© Université Bordeaux 1, 1970-1971, tous droits réservés. L’accès aux archives du séminaire de théorie des nombres de Bordeaux implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. 
Valeurs aux entiers négatifs des fonctions zêta et fonctions zêtap-adiques
Two horizontally spaced adjacent stacks of vertically spaced support plates are vertically displaceable for aligning any of the plates with a fixed take-off station. A supply of strip material is
1-1-2014 Mixed Zeta Functions
MIXED ZETA FUNCTIONS Pieter Mostert Ted Chinburg We examine Dirichlet series which combine the data of a distance function, u, a homogeneous degree zero function, φ, and a multivariable Dirichlet
Von Zahlen und Figuren
Talk at the International Conference ``G\'eom\'etrie au vingti\`eme ci\`ecle: 1930--2000'', Paris, Institut Henri Poincar\'e, Sept. 2001. The title is a homage to Hans Rademacher and Otto Toeplitz
Transgressions of the Godbillon-Vey Class and Rademacher functions
We construct, out of modular symbols, 1-traces that are invariant with respect to the actions of the Hopf algebra H 1 on the crossed product A ℚ of the algebra of modular forms of all levels by
Special values of partial zeta functions of real quadratic fields at nonpositive integers and the Euler-Maclaurin formula
We compute the special values at nonpositive integers of the partial zeta function of an ideal of a real quadratic field applying an asymptotic version of Euler-Maclaurin formula to the lattice cone
Higher Kronecker “limit” formulas for real quadratic fields
Abstract For every integer k ≧ 2 we introduce an analytic function of a positive real variable and give a universal formula expressing the values ζ(ℬ, k) of the zeta functions of narrow ideal classes
Real Multiplication and . . .
Classical theory of Complex Multiplication (CM) shows that all abelian extensions of a complex quadratic field K are generated by the values of appropriate modular functions at the points of finite
An analogue of the Rademacher function for generalized Dedekind sums in higher dimension
We consider generalized Dedekind sums in dimension $n$, for fixed $n$-tuple of natural numbers, defined as sum of products of values of periodic Bernoulli functions. This includes the higher
On Appell sequences of polynomials of Bernoulli and Euler type
Zeta invariants for dirichlet series
We introduce a general method for obtaining the main zeta invariants for a class of double series of Dirichlet type and we apply it to the case of homogeneous quadratic and linear double series.
...
...

References

SHOWING 1-10 OF 12 REFERENCES
Fonctions zeta p-adiques des corps de nombres abeliens réels
© Mémoires de la S. M. F., 1971, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord
Arithmetic Properties of Generalized Bernoulli Numbers.
(1. 3) Bl(x] = Σ(\ Byx~ = (Βχ + x)». r = 0 \ ' / For / == l, χ is the principal character, and B" reduces to the ordinary Bernoulli numbers; for / = 4 and χ the non-principal character (mod 4), BTM
Uber die Werte der Ringklassen
  • L. Funktionen reell-quadratischen Zahlkörper an natürlichen Argumenstellen. Journal of number theory 1, pp. 28-64
  • 1969
Nombres de Bernoulli et fonctions $L p$-adiques
Corps de quaternions et fonctions zêta au point -1
  • C. R. A. S. Paris, t. 274,
  • 1972
Theorie der Eisensteinreihen von mehreren Veranderlichen
  • Abhandl math. Seminar Hamburg, Univ
  • 1928
Corps de quaternions sur un corps de nombres
  • 1972
...
...