Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences

@inproceedings{Russell2016UsingEM,
  title={Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences},
  author={Matthew C. Russell},
  year={2016}
}
OF THE DISSERTATION Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences by Matthew Christopher Russell Dissertation Director: The principal advisor’s name This is the abstract 

References

Publications referenced by this paper.
SHOWING 1-10 OF 45 REFERENCES

Retakh, “A short proof of Kontsevich’s cluster conjecture

Arkady Berenstein, Vladimir
  • C.R. Acad. Sci., Paris, Ser. I,
  • 2011
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL

Retakh, “Noncommutative clusters

Arkady Berenstein, Vladimir
  • In preparation. Available from http://www.math.rutgers.edu/~vretakh/. Accessed June
  • 2013
VIEW 7 EXCERPTS
HIGHLY INFLUENTIAL

The Laurent Phenomenon

  • Adv. Appl. Math.
  • 2001
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

A combinatorial generalization of the Rogers-Ramanujan identities, Amer

B. Gordon
  • J. Math
  • 1961
VIEW 11 EXCERPTS
HIGHLY INFLUENTIAL