Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data.

Abstract

Tuberculosis can be studied at the population level by genotyping strains of Mycobacterium tuberculosis isolated from patients. We use an approximate Bayesian computational method in combination with a stochastic model of tuberculosis transmission and mutation of a molecular marker to estimate the net transmission rate, the doubling time, and the reproductive value of the pathogen. This method is applied to a published data set from San Francisco of tuberculosis genotypes based on the marker IS6110. The mutation rate of this marker has previously been studied, and we use those estimates to form a prior distribution of mutation rates in the inference procedure. The posterior point estimates of the key parameters of interest for these data are as follows: net transmission rate, 0.69/year [95% credibility interval (C.I.) 0.38, 1.08]; doubling time, 1.08 years (95% C.I. 0.64, 1.82); and reproductive value 3.4 (95% C.I. 1.4, 79.7). These figures suggest a rapidly spreading epidemic, consistent with observations of the resurgence of tuberculosis in the United States in the 1980s and 1990s.

5 Figures and Tables

0102030'06'07'08'09'10'11'12'13'14'15'16'17
Citations per Year

123 Citations

Semantic Scholar estimates that this publication has 123 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Tanaka2006UsingAB, title={Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data.}, author={Mark M. Tanaka and Andrew R. Francis and Fabio Luciani and Scott A. Sisson}, journal={Genetics}, year={2006}, volume={173 3}, pages={1511-20} }