Unsupervised Modeling of Twitter Conversations


We propose the first unsupervised approach to the problem of modeling dialogue acts in an open domain. Trained on a corpus of noisy Twitter conversations, our method discovers dialogue acts by clustering raw utterances. Because it accounts for the sequential behaviour of these acts, the learned model can provide insight into the shape of communication in a new medium. We address the challenge of evaluating the emergent model with a qualitative visualization and an intrinsic conversation ordering task. This work is inspired by a corpus of 1.3 million Twitter conversations , which will be made publicly available. This huge amount of data, available only because Twitter blurs the line between chatting and publishing, highlights the need to be able to adapt quickly to a new medium.

Extracted Key Phrases

9 Figures and Tables

Showing 1-10 of 172 extracted citations
Citations per Year

247 Citations

Semantic Scholar estimates that this publication has received between 200 and 311 citations based on the available data.

See our FAQ for additional information.