# Unlinking and unknottedness of monotone Lagrangian submanifolds

@article{Rizell2014UnlinkingAU, title={Unlinking and unknottedness of monotone Lagrangian submanifolds}, author={Georgios Dimitroglou Rizell and Jonathan D. Evans}, journal={Geometry \& Topology}, year={2014}, volume={18}, pages={997-1034} }

Under certain topological assumptions, we show that two monotone Lagrangian submanifolds embedded in the standard symplectic vector space with the same monotonicity constant cannot link one another and that, individually, their smooth knot type is determined entirely by the homotopy theoretic data which classifies the underlying Lagrangian immersion. The topological assumptions are satisfied by a large class of manifolds which are realised as monotone Lagrangians, including tori. After some…

## 15 Citations

### LAGRANGIAN ISOTOPY OF TORI IN S 2 × S 2 AND CP 2

- Mathematics
- 2016

We show that, up to Lagrangian isotopy, there is a unique Lagrangian torus inside each of the following uniruled symplectic four-manifolds: the symplectic vector space R 4 , the projective plane CP 2…

### On linking of Lagrangian tori in R

- Mathematics
- 2020

We prove some results about linking of Lagrangian tori in the symplectic vector space (R, ω). We show that certain enumerative counts of holomophic disks give useful information about linking. This…

### Spherical Lagrangians via ball packings and symplectic cutting

- Mathematics
- 2014

In this paper, we prove the connectedness of symplectic ball packings in the complement of a spherical Lagrangian, $$S^{2}$$ or $$\mathbb{RP }^{2}$$, in symplectic manifolds that are rational or…

### Unlinking Lagrangians in Symplectic 4-Manifolds

- Mathematics
- 2019

We affirmatively answer a strong version in dimension $2n=4$ of a question of Eliashberg on linking of certain Lagrangian disks in $T^* \mathbb{R}^n$. This question was previously answered in…

### Dehn-Seidel twist, $C^0$ symplectic topology and barcodes

- Mathematics
- 2021

We initiate the study of the C symplectic mapping class group, i.e. the group of isotopy classes of symplectic homeomorphisms. We prove that none of the different powers of the square of the…

### Unknottedness of real Lagrangian tori in $$S^2\times S^2$$

- Mathematics
- 2020

We prove the Hamiltonian unknottedness of real Lagrangian tori in the monotone $S^2\times S^2$, namely any real Lagrangian torus in $S^2\times S^2$ is Hamiltonian isotopic to the Clifford torus…

### On linking of Lagrangian tori in $\mathbb{R}^4$

- MathematicsJournal of Symplectic Geometry
- 2020

We prove some results about linking of Lagrangian tori in the symplectic vector space $(\mathbb{R}^4, \omega)$. We show that certain enumerative counts of holomophic disks give useful information…

### A pr 2 01 6 UNIQUENESS OF EXTREMAL LAGRANGIAN TORI IN THE FOUR-DIMENSIONAL DISC

- Mathematics
- 2018

The following interesting quantity was introduced by K. Cieliebak and K. Mohnke for a Lagrangian submanifold L of a symplectic manifold: the minimal positive symplectic area of a disc with boundary…

### String topology with gravitational descendants, and periods of Landau-Ginzburg potentials

- Mathematics
- 2018

This paper introduces new operations on the string topology of a smooth manifold: gravitational descendants of its cotangent bundle, which are augmentations of the Chas-Sullivan $L_\infty$ algebra…

### Lagrangian isotopy of tori in $${S^2\times S^2}$$S2×S2 and $${{\mathbb{C}}P^2}$$CP2

- Mathematics
- 2016

We show that, up to Lagrangian isotopy, there is a unique Lagrangian torus inside each of the following uniruled symplectic four-manifolds: the symplectic vector space $${{\mathbb{R}}^4}$$R4, the…

## References

SHOWING 1-10 OF 57 REFERENCES

### On the extrinsic topology of Lagrangian submanifolds

- Mathematics
- 2005

We investigate the extrinsic topology of Lagrangian submanifolds and of their submanifolds in closed symplectic manifolds using Floer homological methods. The first result asserts that the homology…

### Fredholm theory and transversality for noncompact pseudoholomorphic mapsin symplectizations

- Mathematics
- 2004

We study pseudoholomorphic maps from a punctured Riemann surface into the symplectization of a contact manifold. A Fredholm theory yields the virtual dimension of the moduli spaces of such maps in…

### Lagrangian unknottedness in Stein surfaces

- Mathematics
- 2012

We show that the space of Lagrangian spheres inside the cotangent bundle of the 2-sphere, with its canonical symplectic structure, is contractible. We then discuss the phenomenon of Lagrangian…

### Remarks on monotone Lagrangians in $\mathbf{C}^n$

- Mathematics
- 2011

We derive some restrictions on the topology of a monotone Lagrangian submanifold $L\subset\mathbf{C}^n$ by making observations about the topology of the moduli space of Maslov 2 holomorphic discs…

### Symplectic rigidity: Lagrangian submanifolds

- Mathematics
- 1994

This chapter is supposed to be a summary of what is known today about Lagrangian embeddings. We emphasise the difference between flexibility results, such as the h-principle of Gromov applied here to…

### The Maslov class of Lagrangian tori and quantum products in Floer cohomology

- Mathematics
- 2006

We use Floer cohomology to prove the monotone version of a conjecture of Audin: the minimal Maslov number of a monotone Lagrangian torus in ℝ2n is 2. Our approach is based on the study of the quantum…

### Notes on monotone Lagrangian twist tori

- Mathematics, Physics
- 2010

We construct monotone Lagrangian tori in the standard symplectic vector space, in the complex projective space and in products of spheres. We explain how to classify these Lagrangian tori up to…

### A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS

- Mathematics
- 2007

In this paper we construct the Floer homology for an action functional which was introduced by Rabinowitz and prove a vanishing theorem. As an application, we show that there are no displaceable…

### Spherical Lagrangians via ball packings and symplectic cutting

- Mathematics
- 2014

In this paper, we prove the connectedness of symplectic ball packings in the complement of a spherical Lagrangian, $$S^{2}$$ or $$\mathbb{RP }^{2}$$, in symplectic manifolds that are rational or…

### Existence of a somewhere injective pseudo-holomorphic disc

- Mathematics
- 2000

Abstract. Given a smooth totally real submanifold
$ {\cal L} $ in an almost complex manifold (M,J) and a J-holomorphic disc with boundary in
$ {\cal L} $, by restriction of the initial disc and…