Universality for critical KCM: infinite number of stable directions
@article{Hartarsky2020UniversalityFC, title={Universality for critical KCM: infinite number of stable directions}, author={Ivailo Hartarsky and Laure Marêché and Cristina Toninelli}, journal={Probability Theory and Related Fields}, year={2020}, pages={1-38} }
Kinetically constrained models (KCM) are reversible interacting particle systems on $${{\mathbb {Z}}} ^d$$ Z d with continuous-time constrained Glauber dynamics. They are a natural non-monotone stochastic version of the family of cellular automata with random initial state known as $${{\mathscr {U}}}$$ U -bootstrap percolation. KCM have an interest in their own right, owing to their use for modelling the liquid-glass transition in condensed matter physics. In two dimensions there are three…
9 Citations
Refined universality for critical KCM: lower bounds
- MathematicsCombinatorics, Probability and Computing
- 2022
We study a general class of interacting particle systems called kinetically constrained models (KCM) in two dimensions tightly linked to the monotone cellular automata called bootstrap percolation.…
Universality for critical KCM: Finite number of stable directions
- MathematicsThe Annals of Probability
- 2021
In this paper we consider kinetically constrained models (KCM) on Z2 with general update families U . For U belonging to the so-called “critical class” our focus is on the divergence of the infection…
Refined universality for critical KCM: upper bounds
- Mathematics
- 2021
We study a general class of interacting particle systems called kinetically constrained models (KCM) in two dimensions tightly linked to the monotone cellular automata called bootstrap percolation.…
Universality for monotone cellular automata
- Computer Science
- 2022
A general method for bounding the growth of the infected set when the initial configuration is chosen randomly is developed, and this method is used to prove a lower bound on the critical probability for percolation that is sharp up to a constant factor in the exponent for every ‘critical’ model.
Bisection for kinetically constrained models revisited
- MathematicsElectronic Communications in Probability
- 2021
The bisection method for kinetically constrained models (KCM) of Cancrini, Martinelli, Roberto and Toninelli is a vital technique applied also beyond KCM. In this note we present a new way of…
To fixate or not to fixate in two-type annihilating branching random walks
- MathematicsThe Annals of Probability
- 2021
We study a model of competition between two types evolving as branching random walks on $\mathbb{Z}^d$. The two types are represented by red and blue balls respectively, with the rule that balls of…
U-bootstrap percolation: Critical probability, exponential decay and applications
- MathematicsAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques
- 2021
Bootstrap percolation is a wide class of monotone cellular automata with random initial state. In this work we develop tools for studying in full generality one of the three `universality' classes of…
Sharp threshold for the FA-2f kinetically constrained model
- Computer Science
- 2020
This is the first sharp result for a critical KCM and it compares with Holroyd's 2003 result on bootstrap percolation and its subsequent improvements, and settles various controversies accumulated in the physics literature over the last four decades.
Fixation for Two-Dimensional $${\mathcal {U}}$$-Ising and $${\mathcal {U}}$$-Voter Dynamics
- Mathematics
- 2020
Given a finite family $\mathcal U$ of finite subsets of $\mathbb Z^d\setminus \{0\}$, the $\mathcal U$-$voter\ dynamics$ in the space of configurations $\{+,-\}^{\mathbb Z^d}$ is defined as follows:…
References
SHOWING 1-10 OF 43 REFERENCES
Exact asymptotics for Duarte and supercritical rooted kinetically constrained models
- MathematicsThe Annals of Probability
- 2020
Kinetically constrained models (KCM) are reversible interacting particle systems on $\mathbb Z^d$ with continuous time Markov dynamics of Glauber type, which represent a natural stochastic (and…
Universality Results for Kinetically Constrained Spin Models in Two Dimensions
- MathematicsCommunications in Mathematical Physics
- 2018
Kinetically constrained models (KCM) are reversible interacting particle systems on $${\mathbb{Z}^{d}}$$Zd with continuous timeMarkov dynamics of Glauber type, which represent a natural stochastic…
Universality for critical KCM: Finite number of stable directions
- MathematicsThe Annals of Probability
- 2021
In this paper we consider kinetically constrained models (KCM) on Z2 with general update families U . For U belonging to the so-called “critical class” our focus is on the divergence of the infection…
Universality for critical kinetically constrained models: infinite number of stable directions
- Mathematics
- 2019
Kinetically constrained models (KCM) are reversible interacting particle systems on Zd with continuous-time constrained Glauber dynamics. They are a natural non-monotone stochastic version of the…
Monotone Cellular Automata in a Random Environment
- MathematicsCombinatorics, Probability and Computing
- 2015
The results in this paper are the first of any kind on bootstrap percolation considered in this level of generality, and in particular the first that make no assumptions of symmetry.
Relaxation to equilibrium of generalized East processes on $\mathbb{Z}^{d}$: Renormalization group analysis and energy-entropy competition
- Mathematics
- 2016
We consider a class of kinetically constrained interacting particle systems on Zd which play a key role in several heuristic qualitative and quantitative approaches to describe the complex behavior…
Glassy Time-Scale Divergence and Anomalous Coarsening in a Kinetically Constrained Spin Chain
- Physics
- 1999
We analyse the out of equilibrium behavior of an Ising spin chain with an asymmetric kinetic constraint after a quench to a low temperature T. In the limit T\to 0, we provide an exact solution of the…
The Asymmetric One-Dimensional Constrained Ising Model: Rigorous Results
- Mathematics
- 2002
AbstractWe study a one-dimensional spin (interacting particle) system, with product Bernoulli (p) stationary distribution, in which a site can flip only when its left neighbor is in state +1. Such…
Subcritical -bootstrap percolation models have non-trivial phase transitions
- Mathematics
- 2016
. We prove that there exist natural generalizations of the classical bootstrap percolation model on Z 2 that have non-trivial critical probabilities, and moreover we characterize all homogeneous,…
Time Scale Separation and Dynamic Heterogeneity in the Low Temperature East Model
- Physics
- 2012
We consider the non-equilibrium dynamics of the East model, a linear chain of 0–1 spins evolving under a simple Glauber dynamics in the presence of a kinetic constraint which forbids flips of those…