Corpus ID: 216144746

Universal deformation rings of modules for generalized Brauer tree algebras of polynomial growth

@article{Meyer2020UniversalDR,
  title={Universal deformation rings of modules for generalized Brauer tree algebras of polynomial growth},
  author={D. G. Meyer and Roberto C. Soto and Daniel J. Wackwitz},
  journal={arXiv: Representation Theory},
  year={2020}
}
  • D. G. Meyer, Roberto C. Soto, Daniel J. Wackwitz
  • Published 2020
  • Mathematics
  • arXiv: Representation Theory
  • Let $k$ be an arbitrary field, $\Lambda$ be a $k$-algebra, and $V$ be a $\Lambda$-module. When it exists, the universal deformation ring $R(\Lambda,V)$ of $V$ is a $k$-algebra whose local homomorphisms from $R(\Lambda,V)$ to $R$ parametrize the lifts of $V$ up to $R\Lambda$, where $R$ is any appropriate complete, local commutative Noetherian $k$-algebra. Symmetric special biserial algebras, which coincide with Brauer graph algebras, can be viewed as generalizing the blocks of finite type $p… CONTINUE READING

    Figures from this paper

    References

    SHOWING 1-10 OF 32 REFERENCES
    Maps between tree and band modules
    • 82
    Contemporary Mathematics
    • J. Michael BoardmanAbstract
    • 2007
    • 185
    • PDF
    Deforming Galois Representations
    • 316
    A lifting theorem for modular representations
    • J. Green
    • Mathematics
    • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
    • 1959
    • 12
    Auslander–Reiten components of symmetric special biserial algebras
    • 9
    • PDF