Universal K-matrix for quantum symmetric pairs

@article{Balagovic2015UniversalKF,
  title={Universal K-matrix for quantum symmetric pairs},
  author={Martina Balagovic and S. Kolb},
  journal={arXiv: Quantum Algebra},
  year={2015}
}
Let $\mathfrak{g}$ be a symmetrizable Kac-Moody algebra and let $U_q(\mathfrak{g})$ denote the corresponding quantized enveloping algebra. In the present paper we show that quantum symmetric pair coideal subalgebras $B_{c,s}$ of $U_q(\mathfrak{g})$ have a universal K-matrix if $\mathfrak{g}$ is of finite type. By a universal K-matrix for $B_{c,s}$ we mean an element in a completion of $U_q(\mathfrak{g})$ which commutes with $B_{c,s}$ and provides solutions of the reflection equation in all… Expand
46 Citations

References

SHOWING 1-10 OF 34 REFERENCES
Lectures on quantum groups
  • 508
  • Highly Influential
Introduction to Quantum Groups
  • 1,245
  • Highly Influential
Quantum symmetric Kac–Moody pairs
  • 130
  • PDF
A guide to quantum groups
  • 1,530
...
1
2
3
4
...