Universal Central Extension of the Lie Algebra of Hamiltonian Vector Fields

@article{Janssens2015UniversalCE,
  title={Universal Central Extension of the Lie Algebra of Hamiltonian Vector Fields},
  author={B. Janssens and Cornelia Vizman},
  journal={arXiv: Symplectic Geometry},
  year={2015}
}
We determine the universal central extension of the Lie algebra of hamiltonian vector fields, thereby classifying its central extensions. Furthermore, we classify the central extensions of the Lie algebra of symplectic vector fields, of the Poisson Lie algebra, and of its compactly supported version. 
7 Citations

Tables from this paper

References

SHOWING 1-10 OF 50 REFERENCES
Towards a Lie theory of locally convex groups
  • 221
  • PDF
Universal Central Extensions of Lie Groups
  • 26
  • Highly Influential
Extensions centrales d'algèbres et de groupes de lie de dimension infinie, algèbre de virasoro et généralisations
  • 39
  • Highly Influential
Cohomology of Infinite-Dimensional Lie Algebras
  • 693
Introduction to Symplectic Topology
  • 1,366
  • PDF
On the Cohomology of Compact Homogeneous Spaces of Nilpotent Lie Groups
  • 346
...
1
2
3
4
5
...