Unit indices and cohomology for biquadratic extensions of imaginary quadratic fields
@article{Mazur2008UnitIA, title={Unit indices and cohomology for biquadratic extensions of imaginary quadratic fields}, author={Marcin Mazur and Stephen V. Ullom}, journal={Journal de Theorie des Nombres de Bordeaux}, year={2008}, volume={20}, pages={183-204} }
Nous etudions, en tant que module galoisien, le groupe des unites des extensions biquadratiques de corps de nombres L/M. Le 2-rang du premier groupe de cohomologie des unites de L/M est calcule pour M quelconque. Pour M quadratique imaginaire, nous determinons la plupart des cas (incluant le cas L/M non ramifiee) ou l'indice |V: V 1 V 2 V 3 ] prend sa valeur maximale 8, avec V les unites modulo la torsion de L et V i les unites modulo la torsion d'un des trois sous-corps quadratiques de L/M.
References
SHOWING 1-7 OF 7 REFERENCES
GALOIS GROUPS WITH PRESCRIBED RAMIFICATION
- Mathematics
- 2007
The paper studies Galois groups with a given set of ramified places, in both the function field and number field cases. In the geometric case, it is shown in characteristic p that the fundamental…
Kuroda’s class number formula
- Mathematics
- 1994
Let k be a number field and K/k a V4-extension, i.e., a normal extension with Gal(K/k) = V4, where V4 is Klein’s four-group. K/k has three intermediate fields, say k1, k2, and k3. We will use the…
E-mail : mazur@math.binghamton.edu Stephen V. Ullom Department of Mathematics University of Illinois at Urbana-Champaign 1409 W
- E-mail : mazur@math.binghamton.edu Stephen V. Ullom Department of Mathematics University of Illinois at Urbana-Champaign 1409 W
E-mail : ullom@math.uiuc.edu Manuscrit reçu le 31 janvier
- E-mail : ullom@math.uiuc.edu Manuscrit reçu le 31 janvier
- 2007