Unique Continuation for Many-Body Schrödinger Operators and the Hohenberg-Kohn Theorem
@article{Garrigue2018UniqueCF, title={Unique Continuation for Many-Body Schr{\"o}dinger Operators and the Hohenberg-Kohn Theorem}, author={Louis Garrigue}, journal={Mathematical Physics, Analysis and Geometry}, year={2018}, volume={21}, pages={1-11} }
We prove the strong unique continuation property for many-body Schrödinger operators with an external potential and an interaction potential both in Llocp(ℝd)$L^{p}_{\text {loc}}(\mathbb {R}^{d})$, where p > 2 if d = 3 and p=max(2d/3,2)${p = \max (2d/3,2)}$ otherwise, independently of the number of particles. With the same assumptions, we obtain the Hohenberg-Kohn theorem, which is one of the most fundamental results in Density Functional Theory.
13 Citations
Unique continuation for many-body Schr\"odinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian
- Mathematics
- 2019
We prove the strong unique continuation property for many-body Pauli operators with external potentials, interaction potentials and magnetic fields in $L^p_{\rm loc}(\mathbb{R}^d)$, and with magnetic…
Unique continuation for the magnetic Schrödinger equation
- MathematicsInternational journal of quantum chemistry
- 2020
Abstract The unique‐continuation property from sets of positive measure is here proven for the many‐body magnetic Schrödinger equation. This property guarantees that if a solution of the Schrödinger…
Hohenberg–Kohn Theorems for Interactions, Spin and Temperature
- MathematicsJournal of Statistical Physics
- 2019
We prove Hohenberg-Kohn theorems for several models of quantum mechanics. First, we show that for possibly degenerate systems of several types of particles, the pair correlation functions of any…
Building Kohn–Sham Potentials for Ground and Excited States
- MathematicsArchive for Rational Mechanics and Analysis
- 2022
. We analyze the inverse problem of Density Functional Theory using a regularized variational method. First, we show that given k and a target density ρ , there exist potentials having k th excited…
Universal Functionals in Density Functional Theory
- Mathematics
- 2019
In this chapter we first review the Levy-Lieb functional, which gives the lowest kinetic and interaction energy that can be reached with all possible quantum states having a given density. We discuss…
Some Properties of the Potential-to-Ground State Map in Quantum Mechanics
- MathematicsCommunications in Mathematical Physics
- 2021
We analyze the map from potentials to the ground state in static many-body quantum mechanics. We first prove that the space of binding potentials is path-connected. Then we show that the map is…
Density-functional theory on graphs.
- MathematicsThe Journal of chemical physics
- 2021
The principles of density-functional theory are studied for finite lattice systems represented by graphs. Surprisingly, the fundamental Hohenberg-Kohn theorem is found void, in general, while many…
Revisiting density-functional theory of the total current density
- PhysicsJournal of physics. Condensed matter : an Institute of Physics journal
- 2021
It is proved that Diener’s formulation is unfortunately not capable of reproducing the correct ground-state energy and, furthermore, that the suggested construction of a Hohenberg–Kohn map contains an irreparable mistake.
Weighted Spectral Gap and a Unique Continuation Result for the Magnetic Differential Elliptic Operator
- MathematicsJournal of Mathematics Research
- 2022
We prove two different kind of results for the magnetic elliptic operator which are the spectral gap of the magnetic elliptic functional energy and the inverse Poincare inequality which is used to…
Twelve tales in mathematical physics: An expanded Heineman prize lecture
- PhysicsJournal of Mathematical Physics
- 2022
This is an extended version of my 2018 Heineman prize lecture describing the work for which I got the prize. The citation is very broad, so this describes virtually all my work prior to 1995 and some…
References
SHOWING 1-10 OF 82 REFERENCES
Unique continuation for many-body Schr\"odinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian
- Mathematics
- 2019
We prove the strong unique continuation property for many-body Pauli operators with external potentials, interaction potentials and magnetic fields in $L^p_{\rm loc}(\mathbb{R}^d)$, and with magnetic…
In search of the Hohenberg-Kohn theorem
- Mathematics
- 2014
The Hohenberg-Kohn theorem, a cornerstone of electronic density functional theory, concerns uniqueness of external potentials yielding given ground densities of an ${\mathcal N}$-body system. The…
Unique continuation for the magnetic Schrödinger equation
- MathematicsInternational journal of quantum chemistry
- 2020
Abstract The unique‐continuation property from sets of positive measure is here proven for the many‐body magnetic Schrödinger equation. This property guarantees that if a solution of the Schrödinger…
Unique-continuation from sets of positive measure for the magnetic Schr\"odinger equation
- Mathematics
- 2017
Some Quantitative Unique Continuation Results for Eigenfunctions of the Magnetic Schrödinger Operator
- Mathematics
- 2014
We prove quantitative unique continuation results for solutions of −Δu + W · ∇u + Vu = λu, where λ ∈ ℂ and V and W are complex-valued decaying potentials that satisfy |V(x)| < ⟨x⟩−N and |W(x)| <…
Hohenberg-Kohn theorems in electrostatic and uniform magnetostatic fields.
- PhysicsThe Journal of chemical physics
- 2015
The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for…
Fundamental properties of Hamiltonian operators of Schrödinger type
- Mathematics
- 1951
Introduction. The fundamental quality required of operators representing physical quantities in quantum mechanics is that they be hypermaximal(l) or self-adjoint(2) in the strict sense employed in…
On the original proof by reductio ad absurdum of the Hohenberg-Kohn theorem for many-electron Coulomb systems
- Mathematics
- 2005
It is shown that, for isolated many-electron Coulomb systems with Coulombic external potentials, the usual reductio ad absurdum proof of the Hohenberg–Kohn theorem is unsatisfactory since the…
Hohenberg–Kohn theorem for Coulomb type systems and its generalization
- MathematicsJournal of Mathematical Chemistry
- 2012
Density functional theory (DFT) has become a basic tool for the study of electronic structure of matter, in which the Hohenberg–Kohn theorem plays a fundamental role in the development of DFT. In…