Uniformization of the Orbifold of a Finite Reflection Group

@inproceedings{Saito2003UniformizationOT,
  title={Uniformization of the Orbifold of a Finite Reflection Group},
  author={Kyoji Saito},
  year={2003}
}
We try to understand the relationship between the K(π, 1)-property of the complexified regular orbit space of a finite reflection group and the flat structure on the orbit space via the uniformization equation attached to the flat structure. 

References

Publications referenced by this paper.
Showing 1-10 of 32 references

Déformations isomnodromiques et variétés de Frobenius, Svoirs Actuels, EDP Sciences/CNRS Édition

  • Sabbah, Claude
  • 2002

Frobenius Manifolds and Moduli Spaces for Singularities

  • Hertling, Claus
  • 2002

Lecture at Kinosaki School on Mirror Symmetry

  • Takahashi, Atsushi
  • 2002

Meromorphic connections with logarithmic poles along a free divisor

  • A. G. Aleksandrov
  • MPI Preprint Series
  • 2002

The primitive derivation and freeness of multiCoxeter arrangements

  • Yoshinaga, Masahiko
  • Proc. Japan Acad.,
  • 2002

Cohomology of Coxeter groups and Artingroups

  • C. De Contini, Salvetti, Mario
  • Math. Res. Lett
  • 2000

Action du groupe des tresses sur categorie

  • Deligne, Pierre
  • Invent. math. 128,
  • 1997

The polyhedron dual to the chamber decomposition for a finite Coxeter group

  • Saito, Kyoji
  • Topology of the complement of real hyperplanes in…
  • 1997

Geometry of 2D-Topological Field Theory

  • Dubrovin, Boris
  • LN in Math. 1620,
  • 1996

Lie group theoretic construction of period mappings, Math.Z

  • Yamada, Hiroshi
  • 1995

Similar Papers

Loading similar papers…