# Uniform convergence of Vapnik–Chervonenkis classes under ergodic sampling

@article{Adams2010UniformCO, title={Uniform convergence of Vapnik–Chervonenkis classes under ergodic sampling}, author={Terrence M. Adams and Andrew B. Nobel}, journal={Annals of Probability}, year={2010}, volume={38}, pages={1345-1367} }

We show that if X is a complete separable metric space and C is a countable family of Borel subsets of X with finite VC dimension, then, for every stationary ergodic process with values in X, the relative frequencies of sets C ∈ C converge uniformly to their limiting probabilities. Beyond ergodicity, no assumptions are imposed on the sampling process, and no regularity conditions are imposed on the elements of C. The result extends existing work of Vapnik and Chervonenkis, among others, who…

## 54 Citations

Uniform Approximation of Vapnik-Chervonenkis Classes

- Mathematics
- 2010

For any family of measurable sets in a probability space, we show that either (i) the family has infinite Vapnik-Chervonenkis (VC) dimension or (ii) for every epsilon > 0 there is a finite partition…

The Gap Dimension and Uniform Laws of Large Numbers for Ergodic Processes

- Mathematics
- 2010

Let F be a family of Borel measurable functions on a complete separable metric space. The gap (or fat-shattering) dimension of F is a combinatorial quantity that measures the extent to which…

Sequential complexities and uniform martingale laws of large numbers

- Mathematics
- 2015

We establish necessary and sufficient conditions for a uniform martingale Law of Large Numbers. We extend the technique of symmetrization to the case of dependent random variables and provide…

Entropy and the uniform mean ergodic theorem for a family of sets

- Mathematics
- 2014

We define a notion of entropy for an infinite family $\mathcal{C}$ of measurable sets in a probability space. We show that the mean ergodic theorem holds uniformly for $\mathcal{C}$ under every…

A counterexample concerning the extension of uniform strong laws to ergodic processes

- Mathematics
- 2013

We present a construction showing that a class of sets C that is Glivenko-Cantelli for an i.i.d. process need not be Glivenko-Cantelli for every stationary ergodic process with the same one…

Empirical Processes, Typical Sequences, and Coordinated Actions in Standard Borel Spaces

- Computer Science, MathematicsIEEE Transactions on Information Theory
- 2013

This paper proposes a new notion of typical sequences on a wide class of abstract alphabets (so-called standard Borel spaces), which is based on approximations of memoryless sources by empirical…

Generalization Bounds for Minimum Volume Set Estimation based on Markovian Data

- MathematicsISAIM
- 2018

The main goal of this paper is to establish generalization bounds for minimum volume set estimation for regenerative Markov chains. We obtain new maximal concentration inequality in order to show…

Uniform Approximation and Bracketing Properties of VC classes

- Mathematics
- 2010

We show that the sets in a family with finite VC dimension can be uniformly approximated within a given error by a finite partition. Immediate corollaries include the fact that VC classes have finite…

Bootstrap and uniform bounds for Harris Markov chains

- Mathematics
- 2018

This thesis concentrates on some extensions of empirical processes theory when the data are Markovian. More specifically, we focus on some developments of bootstrap, robustness and statistical…

TOPICS IN COMBINATORICS (MATH 285N, UCLA, WINTER 2016)

- Mathematics
- 2016

Let X be a set (finite or infinite), and let F be a family of subsets of X. A pair (X,F) is called a set system. Given A ⊆ X, we say that the family F shatters A if for every A′ ⊆ A, there is a set S…

## References

SHOWING 1-10 OF 45 REFERENCES

Uniform Ergodic Theorems for Dynamical Systems Under VC Entropy Conditions

- Mathematics
- 1994

The classic limit theorems of Vapnik and Chervonenkis [28, 29] show that if a function class F satisfies a random entropy condition, then the strong law of large numbers holds uniformly over F. In…

Uniform Ergodic Theorems for Dynamical Systems Under VC Entropy Conditions

- Mathematics
- 2008

The classic limit theorems of Vapnik and Chervonenkis [27,28] show that if a function class F satisfies a random entropy condition, then the strong law of large numbers holds uniformly over F . In…

The Glivenko-Cantelli Problem

- Mathematics
- 1987

We give a new type of characterization of the Glivenko-Cantelli classes. In the case of a class $\mathscr{L}$ of sets, the characterization is closely related to the configuration that the sets of…

Necessary and Sufficient Conditions for the Uniform Law of Large Numbers in the Stationary Case

- Mathematics
- 2008

Necessary and sufficient conditions for the uniform law of large numbers for stationary ergodic sequences of random variables are given. Three different types of conditions are investigated and…

RATES OF CONVERGENCE FOR EMPIRICAL PROCESSES OF STATIONARY MIXING SEQUENCES

- Mathematics
- 1994

Classical empirical process theory for Vapnik-Cervonenkis classes deals mainly with sequences of independent variables. This paper extends the theory to stationary sequences of dependent variables.…

The Uniform Mean-Square Ergodic Theorem for Wide Sense Stationary Processes

- Mathematics
- 1998

It is shown that the uniform mean-square ergodic theorem holds for the family of wide sense stationary sequences, as soon as the random process with orthogonal increments, which corresponds to the…

Measure Theory

- Mathematics
- 2007

These are some brief notes on measure theory, concentrating on Lebesgue measure on Rn. Some missing topics I would have liked to have included had time permitted are: the change of variable formula…

What is ergodic theory

- Mathematics
- 1963

Ergodic theory involves the study of transformations on measure spaces. Interchanging the words “measurable function” and “probability density function” translates many results from real analysis to…