Une remarque sur les courbes de Reichardt–Lind et de Schinzel

@article{Wittenberg2012UneRS,
  title={Une remarque sur les courbes de Reichardt–Lind et de Schinzel},
  author={Olivier Wittenberg},
  journal={arXiv: Algebraic Geometry},
  year={2012},
  pages={329-337}
}
We prove that the arithmetic fundamental group of X admits no section over the absolute Galois group of \(\mathbb{Q}\) when X is the Schinzel curve, thereby confirming in this example the prediction given by Grothendieck’s section conjecture. 
2 Citations
Brauer–Manin and Descent Obstructions
In Chap. 10 we have discussed obstructions to sections arising from arithmetic at p-adic places. Later in Chap. 16 we will discuss what is known about the local analogues of the section conjecture
LOCAL-GLOBAL PRINCIPLE FOR RATIONAL POINTS AND ZERO-CYCLES ARIZONA WINTER SCHOOL 2015
At the AWS 1999, I discussed work on the Hasse principle achieved during the previous decade. The present lectures are meant as an introduction to significant progress achieved during the last 5

References

SHOWING 1-8 OF 8 REFERENCES
Galois sections for abelianized fundamental groups
Given a smooth projective curve X of genus at least 2 over a number field k, Grothendieck’s Section Conjecture predicts that the canonical projection from the étale fundamental group of X onto the
Remarks on cycle classes of sections of the arithmetic fundamental group
Given a smooth and separated K(pi,1) variety X over a field k, we associate a "cycle class" in etale cohomology with compact supports to any continuous section of the natural map from the arithmetic
Einige im Kleinen überall lösbare, im Großen unlösbare diophantische Gleichungen.
Bisher kennt man noch keine Methode, von einer gegebenen diophantischen Gleichung ax* -jbx*y* + q/ = z mit rationalen Koeffizienten , , c zu entscheiden, ob sie im Großen lösbar ist, d. h. ob sie
HS09. David Harari and Tamás Szamuely. Galois sections for a belianized fundamental groups
  • Notes in Mathematics,
  • 1997